快捷方式

JumanjiEnv

torchrl.envs.JumanjiEnv(*args, **kwargs)[源代码]

使用环境名称构建的 Jumanji 环境包装器。

Jumanji 提供了一个基于 Jax 的向量化仿真框架。TorchRL 的包装器会为 Jax 到 Torch 的转换带来一些开销,但仍然可以在模拟轨迹之上构建计算图,允许通过回放进行反向传播。

GitHub:https://github.com/instadeepai/jumanji

文档:https://instadeepai.github.io/jumanji/

论文:https://arxiv.org/abs/2306.09884

参数:
  • env_name (str) – 要包装的环境名称。必须是 available_envs 的一部分。

  • categorical_action_encoding (bool, 可选) – 如果为 True,则将类别规范转换为 TorchRL 等效规范 (torchrl.data.DiscreteTensorSpec),否则将使用独热编码 (torchrl.data.OneHotTensorSpec)。默认值为 False

关键字参数:
  • from_pixels (bool, 可选) – 尚未支持。

  • frame_skip (int, 可选) – 如果提供,则表示要重复相同操作的步数。返回的观察结果将是序列的最后观察结果,而奖励将是跨步数的奖励之和。

  • device (torch.device, 可选) – 如果提供,则为要将数据转换到的设备。默认值为 torch.device("cpu")

  • batch_size (torch.Size, 可选) – 环境的批次大小。使用 jumanji 时,这表示向量化环境的数量。默认值为 torch.Size([])

  • allow_done_after_reset (bool, 可选) – 如果为 True,则允许环境在调用 reset() 后立即处于 done 状态。默认值为 False

变量:

available_envs – 可用于构建的环境

示例

>>> from torchrl.envs import JumanjiEnv
>>> env = JumanjiEnv("Snake-v1")
>>> env.set_seed(0)
>>> td = env.reset()
>>> td["action"] = env.action_spec.rand()
>>> td = env.step(td)
>>> print(td)
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
        action_mask: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.bool, is_shared=False),
        done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
        grid: Tensor(shape=torch.Size([12, 12, 5]), device=cpu, dtype=torch.float32, is_shared=False),
        next: TensorDict(
            fields={
                action_mask: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.bool, is_shared=False),
                done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                grid: Tensor(shape=torch.Size([12, 12, 5]), device=cpu, dtype=torch.float32, is_shared=False),
                reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                state: TensorDict(
                    fields={
                        action_mask: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.bool, is_shared=False),
                        body: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.bool, is_shared=False),
                        body_state: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.int32, is_shared=False),
                        fruit_position: TensorDict(
                            fields={
                                col: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                                row: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=cpu,
                            is_shared=False),
                        head_position: TensorDict(
                            fields={
                                col: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                                row: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=cpu,
                            is_shared=False),
                        key: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.int32, is_shared=False),
                        length: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                        step_count: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                        tail: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.bool, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=cpu,
                    is_shared=False),
                step_count: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([]),
            device=cpu,
            is_shared=False),
        state: TensorDict(
            fields={
                action_mask: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.bool, is_shared=False),
                body: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.bool, is_shared=False),
                body_state: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.int32, is_shared=False),
                fruit_position: TensorDict(
                    fields={
                        col: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                        row: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=cpu,
                    is_shared=False),
                head_position: TensorDict(
                    fields={
                        col: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                        row: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=cpu,
                    is_shared=False),
                key: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.int32, is_shared=False),
                length: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                step_count: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                tail: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([]),
            device=cpu,
            is_shared=False),
        step_count: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
        terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([]),
    device=cpu,
    is_shared=False)
>>> print(env.available_envs)
['Game2048-v1',
 'Maze-v0',
 'Cleaner-v0',
 'CVRP-v1',
 'MultiCVRP-v0',
 'Minesweeper-v0',
 'RubiksCube-v0',
 'Knapsack-v1',
 'Sudoku-v0',
 'Snake-v1',
 'TSP-v1',
 'Connector-v2',
 'MMST-v0',
 'GraphColoring-v0',
 'RubiksCube-partly-scrambled-v0',
 'RobotWarehouse-v0',
 'Tetris-v0',
 'BinPack-v2',
 'Sudoku-very-easy-v0',
 'JobShop-v0']

为了利用 Jumanji,通常会同时执行多个环境。

>>> from torchrl.envs import JumanjiEnv
>>> env = JumanjiEnv("Snake-v1", batch_size=[10])
>>> env.set_seed(0)
>>> td = env.reset()
>>> td["action"] = env.action_spec.rand()
>>> td = env.step(td)

在以下示例中,我们将迭代地测试不同的批次大小并报告简短回放的执行时间

示例

>>> from torch.utils.benchmark import Timer
>>> for batch_size in [4, 16, 128]:
...     timer = Timer(
...     '''
... env.rollout(100)
... ''',
... setup=f'''
... from torchrl.envs import JumanjiEnv
... env = JumanjiEnv('Snake-v1', batch_size=[{batch_size}])
... env.set_seed(0)
... env.rollout(2)
... ''')
...     print(batch_size, timer.timeit(number=10))
4 <torch.utils.benchmark.utils.common.Measurement object at 0x1fca91910>
env.rollout(100)
setup: [...]
  Median: 122.40 ms
  2 measurements, 1 runs per measurement, 1 thread
16 <torch.utils.benchmark.utils.common.Measurement object at 0x1ff9baee0>
env.rollout(100)
setup: [...]
  Median: 134.39 ms
  2 measurements, 1 runs per measurement, 1 thread
128 <torch.utils.benchmark.utils.common.Measurement object at 0x1ff9ba7c0>
env.rollout(100)
setup: [...]
  Median: 172.31 ms
  2 measurements, 1 runs per measurement, 1 thread

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取针对初学者和高级开发者的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源