快捷方式

make_trainer

torchrl.trainers.helpers.make_trainer(collector: DataCollectorBase, loss_module: LossModule, recorder: Optional[EnvBase] = None, target_net_updater: Optional[TargetNetUpdater] = None, policy_exploration: Optional[Union[TensorDictModuleWrapper, TensorDictModule]] = None, replay_buffer: Optional[ReplayBuffer] = None, logger: Optional[Logger] = None, cfg: DictConfig = None) Trainer[source]

给定其组成部分创建 Trainer 实例。

参数:
  • collector (DataCollectorBase) – 用于收集数据的收集器。

  • loss_module (LossModule) – TorchRL 损失模块

  • recorder (EnvBase, 可选) – 记录器环境。如果为 None,则训练器将在没有测试的情况下训练策略。

  • target_net_updater (TargetNetUpdater, 可选) – 目标网络更新对象。

  • policy_exploration (TDModuleTensorDictModuleWrapper, 可选) – 用于记录和探索更新的策略(应与学习到的策略同步)。

  • replay_buffer (ReplayBuffer, 可选) – 用于收集数据的回放缓冲区。

  • logger (Logger, 可选) – 用于日志记录的日志记录器。

  • cfg (DictConfig, 可选) – 包含脚本参数的 DictConfig。如果为 None,则使用默认参数。

返回值:

使用输入对象构建的训练器。优化器由此辅助函数使用提供的 cfg 构建。

示例

>>> import torch
>>> import tempfile
>>> from torchrl.trainers.loggers import TensorboardLogger
>>> from torchrl.trainers import Trainer
>>> from torchrl.envs import EnvCreator
>>> from torchrl.collectors.collectors import SyncDataCollector
>>> from torchrl.data import TensorDictReplayBuffer
>>> from torchrl.envs.libs.gym import GymEnv
>>> from torchrl.modules import TensorDictModuleWrapper, SafeModule, ValueOperator, EGreedyWrapper
>>> from torchrl.objectives.common import LossModule
>>> from torchrl.objectives.utils import TargetNetUpdater
>>> from torchrl.objectives import DDPGLoss
>>> env_maker = EnvCreator(lambda: GymEnv("Pendulum-v0"))
>>> env_proof = env_maker()
>>> obs_spec = env_proof.observation_spec
>>> action_spec = env_proof.action_spec
>>> net = torch.nn.Linear(env_proof.observation_spec.shape[-1], action_spec.shape[-1])
>>> net_value = torch.nn.Linear(env_proof.observation_spec.shape[-1], 1)  # for the purpose of testing
>>> policy = SafeModule(action_spec, net, in_keys=["observation"], out_keys=["action"])
>>> value = ValueOperator(net_value, in_keys=["observation"], out_keys=["state_action_value"])
>>> collector = SyncDataCollector(env_maker, policy, total_frames=100)
>>> loss_module = DDPGLoss(policy, value, gamma=0.99)
>>> recorder = env_proof
>>> target_net_updater = None
>>> policy_exploration = EGreedyWrapper(policy)
>>> replay_buffer = TensorDictReplayBuffer()
>>> dir = tempfile.gettempdir()
>>> logger = TensorboardLogger(exp_name=dir)
>>> trainer = make_trainer(collector, loss_module, recorder, target_net_updater, policy_exploration,
...    replay_buffer, logger)
>>> print(trainer)

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取针对初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源