REDQLoss¶
- class torchrl.objectives.REDQLoss(*args, **kwargs)[源代码]¶
REDQ 损失模块。
REDQ (RANDOMIZED ENSEMBLED DOUBLE Q-LEARNING: LEARNING FAST WITHOUT A MODEL https://openreview.net/pdf?id=AY8zfZm0tDd) 推广了使用 Q 值函数集成来训练类似 SAC 算法的思想。
- 参数:
actor_network (TensorDictModule) – 待训练的 actor
qvalue_network (TensorDictModule) –
单个 Q 值网络或 Q 值网络列表。如果提供单个 qvalue_network 实例,它将被复制
num_qvalue_nets
次。如果传递模块列表,它们的参数将被堆叠,除非它们共享相同的身份(在这种情况下,原始参数将被扩展)。警告
如果传递参数列表,则 __不会__ 与策略参数进行比较,所有参数将被视为非绑定状态。
- 关键字参数:
num_qvalue_nets (int, optional) – 待训练的 Q 值网络数量。默认值为
10
。sub_sample_len (int, optional) – 用于评估下一状态值的 Q 值网络子采样数量。默认值为
2
。loss_function (str, optional) – 用于 Q 值的损失函数。可以是
"smooth_l1"
,"l2"
,"l1"
之一。默认值为"smooth_l1"
。alpha_init (
float
, optional) – 初始熵乘数。默认值为1.0
。min_alpha (
float
, optional) – alpha 的最小值。默认值为0.1
。max_alpha (
float
, optional) – alpha 的最大值。默认值为10.0
。action_spec (TensorSpec, optional) – 动作张量规范。如果未提供且目标熵为
"auto"
,将从 actor 中检索。fixed_alpha (bool, optional) – alpha 是否应训练以匹配目标熵。默认值为
False
。target_entropy (Union[str, Number], optional) – 随机策略的目标熵。默认值为 "auto"。
delay_qvalue (bool, optional) – 是否将目标 Q 值网络与用于数据收集的 Q 值网络分开。默认值为
False
。gSDE (bool, optional) – 了解是否使用 gSDE 对于创建随机噪声变量是必要的。默认值为
False
。priority_key (str, optional) – [已弃用,请改用 .set_keys()] 用于写入优先级回放缓冲区优先级值的键。默认值为
"td_error"
。separate_losses (bool, optional) – 如果为
True
,则策略和 critic 之间共享的参数将仅在策略损失上进行训练。默认为False
,即梯度会传播到共享参数以用于策略和 critic 损失。reduction (str, optional) – 指定应用于输出的归约方式:
"none"
|"mean"
|"sum"
。"none"
:不应用归约;"mean"
:输出的总和将除以输出元素的数量;"sum"
:输出将被求和。默认值:"mean"
。
示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.redq import REDQLoss >>> from tensordict import TensorDict >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor()) >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["loc", "scale"], ... spec=spec, ... distribution_class=TanhNormal) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> qvalue = ValueOperator( ... module=module, ... in_keys=['observation', 'action']) >>> loss = REDQLoss(actor, qvalue) >>> batch = [2, ] >>> action = spec.rand(batch) >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": action, ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1), ... ("next", "observation"): torch.randn(*batch, n_obs), ... }, batch) >>> loss(data) TensorDict( fields={ action_log_prob_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), next.state_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), state_action_value_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此类也兼容非 TensorDict 的模块,无需使用任何与 TensorDict 相关的原始类型。在这种情况下,预期的关键字参数是:
["action", "next_reward", "next_done", "next_terminated"]
+ actor 和 qvalue 网络的in_keys
。返回值是以下顺序的张量元组:["loss_actor", "loss_qvalue", "loss_alpha", "alpha", "entropy", "state_action_value_actor", "action_log_prob_actor", "next.state_value", "target_value",]
。示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.redq import REDQLoss >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor()) >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["loc", "scale"], ... spec=spec, ... distribution_class=TanhNormal) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> qvalue = ValueOperator( ... module=module, ... in_keys=['observation', 'action']) >>> loss = REDQLoss(actor, qvalue) >>> batch = [2, ] >>> action = spec.rand(batch) >>> # filter output keys to "loss_actor", and "loss_qvalue" >>> _ = loss.select_out_keys("loss_actor", "loss_qvalue") >>> loss_actor, loss_qvalue = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_reward=torch.randn(*batch, 1), ... next_observation=torch.randn(*batch, n_obs)) >>> loss_actor.backward()
- default_keys¶
_AcceptedKeys 的别名
- forward(tensordict: TensorDictBase = None) TensorDictBase [源代码]¶
它旨在读取输入的 TensorDict 并返回另一个包含以“loss*”命名的损失键的 tensordict。
将损失拆分为其组成部分后,训练器可以使用它们来记录整个训练过程中的各种损失值。输出 tensordict 中存在的其他标量值也会被记录。
- 参数:
tensordict — 包含计算损失所需值的输入 tensordict。
- 返回值:
一个没有批处理维度的新 tensordict,包含各种将命名为“loss*”的损失标量。损失必须以此名称返回,因为它们将在反向传播之前被训练器读取,这一点至关重要。
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[源代码]¶
值函数构造器。
如果需要非默认值函数,则必须使用此方法构建它。
- 参数:
value_type (ValueEstimators) — 指示要使用的值函数的
ValueEstimators
枚举类型。如果未提供,将使用存储在default_value_estimator
属性中的默认值。生成的值估计器类将被注册到self.value_type
中,以便将来进行细化。**hyperparams — 用于值函数的超参数。如果未提供,将使用由
default_value_kwargs()
指示的值。
示例
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)