DecisionTransformerInferenceWrapper¶
- class torchrl.modules.tensordict_module.DecisionTransformerInferenceWrapper(*args, **kwargs)[source]¶
用于决策Transformer的推理动作包装器。
专门为决策Transformer设计的包装器,它将掩盖输入 tensordict 序列到推理上下文。输出将是一个 TensorDict,其键与输入相同,但仅包含预测动作序列中的最后一个动作和最后一个回报目标。
此模块创建并返回 tensordict 的修改副本,即它**不会**就地修改 tensordict。
注意
如果动作、观察或回报目标键不是标准的,应使用方法
set_tensor_keys()
,例如:>>> dt_inference_wrapper.set_tensor_keys(action="foo", observation="bar", return_to_go="baz")
in_keys 是观察、动作和回报目标键。out-keys 与 in-keys 匹配,并额外包含来自策略的任何其他输出键(例如,分布参数或隐藏值)。
- 参数:
policy (TensorDictModule) – 接收观察并产生动作值的策略模块
- 关键字参数:
inference_context (int) – 上下文中不会被掩盖的先前动作的数量。例如,对于形状为 [batch_size, context, obs_dim],其中 context=20 且 inference_context=5 的观察输入,上下文的前 15 个条目将被掩盖。默认为 5。
spec (Optional[TensorSpec], optional) – 输入 TensorDict 的规范。如果为 None,将从策略模块推断。
device (torch.device, optional) – 如果提供,指定缓冲区/specs 将被放置的设备。
示例
>>> import torch >>> from tensordict import TensorDict >>> from tensordict.nn import TensorDictModule >>> from torchrl.modules import ( ... ProbabilisticActor, ... TanhDelta, ... DTActor, ... DecisionTransformerInferenceWrapper, ... ) >>> dtactor = DTActor(state_dim=4, action_dim=2, ... transformer_config=DTActor.default_config() ... ) >>> actor_module = TensorDictModule( ... dtactor, ... in_keys=["observation", "action", "return_to_go"], ... out_keys=["param"]) >>> dist_class = TanhDelta >>> dist_kwargs = { ... "low": -1.0, ... "high": 1.0, ... } >>> actor = ProbabilisticActor( ... in_keys=["param"], ... out_keys=["action"], ... module=actor_module, ... distribution_class=dist_class, ... distribution_kwargs=dist_kwargs) >>> inference_actor = DecisionTransformerInferenceWrapper(actor) >>> sequence_length = 20 >>> td = TensorDict({"observation": torch.randn(1, sequence_length, 4), ... "action": torch.randn(1, sequence_length, 2), ... "return_to_go": torch.randn(1, sequence_length, 1)}, [1,]) >>> result = inference_actor(td) >>> print(result) TensorDict( fields={ action: Tensor(shape=torch.Size([1, 2]), device=cpu, dtype=torch.float32, is_shared=False), observation: Tensor(shape=torch.Size([1, 20, 4]), device=cpu, dtype=torch.float32, is_shared=False), param: Tensor(shape=torch.Size([1, 20, 2]), device=cpu, dtype=torch.float32, is_shared=False), return_to_go: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([1]), device=None, is_shared=False)