resnet101¶
- torchvision.models.resnet101(*, weights: Optional[ResNet101_Weights] = None, progress: bool = True, **kwargs: Any) ResNet [source]¶
来自 Deep Residual Learning for Image Recognition 论文的 ResNet-101。
注意
TorchVision 的瓶颈层将下采样的步长(stride)放在第二个 3x3 卷积层,而原始论文将其放在第一个 1x1 卷积层。这个变体提高了准确性,被称为 ResNet V1.5。
- 参数:
weights (
ResNet101_Weights
, 可选) – 要使用的预训练权重。有关更多详细信息和可能的值,请参阅下文的ResNet101_Weights
。默认情况下,不使用预训练权重。progress (bool, 可选) – 如果为 True,则在 stderr 中显示下载进度条。默认为 True。
**kwargs – 传递给
torchvision.models.resnet.ResNet
基类的参数。有关此类的更多详细信息,请参阅源代码。
- class torchvision.models.ResNet101_Weights(value)[source]¶
上面的模型构建器接受以下值作为
weights
参数。ResNet101_Weights.DEFAULT
等同于ResNet101_Weights.IMAGENET1K_V2
。您也可以使用字符串,例如weights='DEFAULT'
或weights='IMAGENET1K_V1'
。ResNet101_Weights.IMAGENET1K_V1:
这些权重使用简单的训练配方,结果与论文结果非常接近。
acc@1 (在 ImageNet-1K 上)
77.374
acc@5 (在 ImageNet-1K 上)
93.546
最小尺寸
高度=1,宽度=1
类别
丁鳜, 金鱼, 大白鲨, ... (省略 997 个)
参数数量
44549160
配方
GFLOPS
7.80
文件大小
170.5 MB
推理变换可在
ResNet101_Weights.IMAGENET1K_V1.transforms
获得,并执行以下预处理操作:接受PIL.Image
对象、批量(B, C, H, W)
和单张(C, H, W)
图像torch.Tensor
对象。图像使用interpolation=InterpolationMode.BILINEAR
方法调整大小至resize_size=[256]
,然后进行中心裁剪,crop_size=[224]
。最后,值首先被重新缩放到[0.0, 1.0]
,然后使用mean=[0.485, 0.456, 0.406]
和std=[0.229, 0.224, 0.225]
进行归一化。ResNet101_Weights.IMAGENET1K_V2:
这些权重通过使用 TorchVision 的新训练配方改进了原始论文的结果。也可作为
ResNet101_Weights.DEFAULT
获得。acc@1 (在 ImageNet-1K 上)
81.886
acc@5 (在 ImageNet-1K 上)
95.78
最小尺寸
高度=1,宽度=1
类别
丁鳜, 金鱼, 大白鲨, ... (省略 997 个)
参数数量
44549160
配方
GFLOPS
7.80
文件大小
170.5 MB
推理变换可在
ResNet101_Weights.IMAGENET1K_V2.transforms
获得,并执行以下预处理操作:接受PIL.Image
对象、批量(B, C, H, W)
和单张(C, H, W)
图像torch.Tensor
对象。图像使用interpolation=InterpolationMode.BILINEAR
方法调整大小至resize_size=[232]
,然后进行中心裁剪,crop_size=[224]
。最后,值首先被重新缩放到[0.0, 1.0]
,然后使用mean=[0.485, 0.456, 0.406]
和std=[0.229, 0.224, 0.225]
进行归一化。