指标 API¶
指标 API 是一个 http API,用于以 prometheus 格式获取指标。它默认监听端口 8082,并且只能从 localhost 访问。要更改默认设置,请参阅TorchServe 配置。默认情况下启用指标端点,并且当 metrics_mode 配置设置为 prometheus
时,它会返回 Prometheus 格式的指标。您可以使用 curl 请求查询指标,或者将 Prometheus 服务器指向该端点,并使用 Grafana 进行仪表板展示。
默认情况下,这些 API 已启用,但可以通过在 torchserve config.properties 文件中设置 enable_metrics_api=false
来禁用它。有关详细信息,请参阅 Torchserve config 文档。
注意 这不要与 torch serve 的自定义指标 API混淆。自定义指标 API 用于根据配置的 metrics_mode
(log 或 prometheus)收集自定义后端指标。有关此 API 的更多信息,请参见此处。
curl http://127.0.0.1:8082/metrics
# HELP Requests5XX Torchserve prometheus counter metric with unit: Count
# TYPE Requests5XX counter
# HELP DiskUsage Torchserve prometheus gauge metric with unit: Gigabytes
# TYPE DiskUsage gauge
DiskUsage{Level="Host",Hostname="88665a372f4b.ant.amazon.com",} 20.054508209228516
# HELP GPUUtilization Torchserve prometheus gauge metric with unit: Percent
# TYPE GPUUtilization gauge
# HELP PredictionTime Torchserve prometheus gauge metric with unit: ms
# TYPE PredictionTime gauge
PredictionTime{ModelName="resnet18",Level="Model",Hostname="88665a372f4b.ant.amazon.com",} 83.13
# HELP WorkerLoadTime Torchserve prometheus gauge metric with unit: Milliseconds
# TYPE WorkerLoadTime gauge
WorkerLoadTime{WorkerName="W-9000-resnet18_1.0",Level="Host",Hostname="88665a372f4b.ant.amazon.com",} 4593.0
WorkerLoadTime{WorkerName="W-9001-resnet18_1.0",Level="Host",Hostname="88665a372f4b.ant.amazon.com",} 4592.0
# HELP MemoryAvailable Torchserve prometheus gauge metric with unit: Megabytes
# TYPE MemoryAvailable gauge
MemoryAvailable{Level="Host",Hostname="88665a372f4b.ant.amazon.com",} 5829.7421875
# HELP GPUMemoryUsed Torchserve prometheus gauge metric with unit: Megabytes
# TYPE GPUMemoryUsed gauge
# HELP ts_inference_requests_total Torchserve prometheus counter metric with unit: Count
# TYPE ts_inference_requests_total counter
ts_inference_requests_total{model_name="resnet18",model_version="default",hostname="88665a372f4b.ant.amazon.com",} 3.0
# HELP GPUMemoryUtilization Torchserve prometheus gauge metric with unit: Percent
# TYPE GPUMemoryUtilization gauge
# HELP HandlerTime Torchserve prometheus gauge metric with unit: ms
# TYPE HandlerTime gauge
HandlerTime{ModelName="resnet18",Level="Model",Hostname="88665a372f4b.ant.amazon.com",} 82.93
# HELP ts_inference_latency_microseconds Torchserve prometheus counter metric with unit: Microseconds
# TYPE ts_inference_latency_microseconds counter
ts_inference_latency_microseconds{model_name="resnet18",model_version="default",hostname="88665a372f4b.ant.amazon.com",} 290371.129
# HELP CPUUtilization Torchserve prometheus gauge metric with unit: Percent
# TYPE CPUUtilization gauge
CPUUtilization{Level="Host",Hostname="88665a372f4b.ant.amazon.com",} 0.0
# HELP MemoryUsed Torchserve prometheus gauge metric with unit: Megabytes
# TYPE MemoryUsed gauge
MemoryUsed{Level="Host",Hostname="88665a372f4b.ant.amazon.com",} 8245.62109375
# HELP QueueTime Torchserve prometheus gauge metric with unit: Milliseconds
# TYPE QueueTime gauge
QueueTime{Level="Host",Hostname="88665a372f4b.ant.amazon.com",} 0.0
# HELP ts_queue_latency_microseconds Torchserve prometheus counter metric with unit: Microseconds
# TYPE ts_queue_latency_microseconds counter
ts_queue_latency_microseconds{model_name="resnet18",model_version="default",hostname="88665a372f4b.ant.amazon.com",} 365.21
# HELP DiskUtilization Torchserve prometheus gauge metric with unit: Percent
# TYPE DiskUtilization gauge
DiskUtilization{Level="Host",Hostname="88665a372f4b.ant.amazon.com",} 5.8
# HELP Requests2XX Torchserve prometheus counter metric with unit: Count
# TYPE Requests2XX counter
Requests2XX{Level="Host",Hostname="88665a372f4b.ant.amazon.com",} 8.0
# HELP Requests4XX Torchserve prometheus counter metric with unit: Count
# TYPE Requests4XX counter
# HELP WorkerThreadTime Torchserve prometheus gauge metric with unit: Milliseconds
# TYPE WorkerThreadTime gauge
WorkerThreadTime{Level="Host",Hostname="88665a372f4b.ant.amazon.com",} 1.0
# HELP DiskAvailable Torchserve prometheus gauge metric with unit: Gigabytes
# TYPE DiskAvailable gauge
DiskAvailable{Level="Host",Hostname="88665a372f4b.ant.amazon.com",} 325.05113983154297
# HELP MemoryUtilization Torchserve prometheus gauge metric with unit: Percent
# TYPE MemoryUtilization gauge
MemoryUtilization{Level="Host",Hostname="88665a372f4b.ant.amazon.com",} 64.4
curl "http://127.0.0.1:8082/metrics?name[]=ts_inference_latency_microseconds&name[]=ts_queue_latency_microseconds" --globoff
# HELP ts_queue_latency_microseconds Torchserve prometheus counter metric with unit: Microseconds
# TYPE ts_queue_latency_microseconds counter
ts_queue_latency_microseconds{model_name="resnet18",model_version="default",hostname="88665a372f4b.ant.amazon.com",} 365.21
# HELP ts_inference_latency_microseconds Torchserve prometheus counter metric with unit: Microseconds
# TYPE ts_inference_latency_microseconds counter
ts_inference_latency_microseconds{model_name="resnet18",model_version="default",hostname="88665a372f4b.ant.amazon.com",} 290371.129
Prometheus 服务器¶
要在 Prometheus 服务器上查看这些指标,请按照此处的说明下载并安装。创建一个最小的 prometheus.yml
配置文件,如下所示,并运行 ./prometheus --config.file=prometheus.yml
。
global:
scrape_interval: 15s
evaluation_interval: 15s
scrape_configs:
- job_name: 'prometheus'
static_configs:
- targets: ['localhost:9090']
- job_name: 'torchserve'
static_configs:
- targets: ['localhost:8082'] #TorchServe metrics endpoint
在浏览器中导航到 https://127.0.0.1:9090/
以执行查询并创建图表

Grafana¶
一旦您运行了 Torchserve 和 Prometheus 服务器,您可以进一步 设置 Grafana,将其指向 Prometheus 服务器并导航到 https://127.0.0.1:3000/
以创建仪表板和图表。
您可以使用下面给出的命令来启动 Grafana - sudo systemctl daemon-reload && sudo systemctl enable grafana-server && sudo systemctl start grafana-server
