快捷方式

权重流式传输

TensorRT 中的权重流式传输是一项强大的功能,旨在克服使用大型模型时的 GPU 内存限制。它通过在推理期间将权重数据从主机 (CPU) 内存流式传输到 GPU 内存,从而能够运行比可用 GPU 内存更大的模型。

流式传输更大的内存量可能会导致性能降低。但是,如果流式传输权重允许用户运行更大的批量大小,则可能会带来更高的吞吐量。这种增加的吞吐量有时可能超过流式传输权重造成的减速。要流式传输的最佳内存量因特定模型和硬件而异。尝试不同的内存限制可以帮助找到流式传输开销和批量大小优势之间的最佳平衡。

此示例使用预训练的 Llama-2 模型,并展示如何将权重流式传输功能与 Torch-TensorRT 结合使用。

  1. 编译选项 - 使用权重流式传输功能构建 trt 引擎

  2. 运行时 API - 通过上下文管理器控制权重流式传输预算

导入和模型定义

import copy
import timeit

import numpy as np
import torch
import torch_tensorrt
from transformers import AutoModelForCausalLM
from utils import export_llm


def time_generate(model, inputs, output_seq_length, iterations=10):
    """
    Measure the time for generating a sentence over certain number of iterations
    """
    # We only support single input (B x seq_len) for LLMs now
    input_seq = inputs[0]
    with torch.no_grad():
        timings = []
        for _ in range(iterations):
            start_time = timeit.default_timer()
            inputs_copy = copy.copy(input_seq)
            # Greedy decoding of the model. This generates up to max_tokens.
            while inputs_copy.shape[1] <= output_seq_length:
                outputs = model(inputs_copy)
                logits = outputs.logits
                next_token_logits = logits[:, -1, :]
                next_tokens = torch.argmax(next_token_logits, dim=-1)
                inputs_copy = torch.cat([inputs_copy, next_tokens[:, None]], dim=-1)
            torch.cuda.synchronize()
            end_time = timeit.default_timer()
            timings.append(end_time - start_time)

    times = np.array(timings)
    time_mean_ms = np.mean(times) * 1000

    return time_mean_ms


# Load the LLaMA-2 model
DEVICE = torch.device("cuda:0")
llama_path = "meta-llama/Llama-2-7b-chat-hf"
with torch.no_grad():
    model = AutoModelForCausalLM.from_pretrained(
        llama_path, use_cache=False, attn_implementation="eager"
    ).eval()

# Set input and output sequence lengths
isl = 128
osl = 256

# Create random input tensors
input_tensors = [torch.randint(0, 5, (1, isl), dtype=torch.int64).cuda()]
# Convert the model to half precision (FP16)
model = model.half()
# Exports the LLM model into an ExportedProgram with dynamic shapes.
llama2_ep = export_llm(model, input_tensors[0], max_seq_len=osl)

编译器选项

构建具有权重流式传输功能的引擎需要 enable_weight_streaming=True 选项和 use_explicit_typing=True。 use_explicit_typing=True 选项创建一个强类型网络,并且在 enabled_precisions 选项中仅允许 float32 精度

# Create a TensorRT-compiled model
trt_model = torch_tensorrt.dynamo.compile(
    llama2_ep,
    inputs=input_tensors,
    enabled_precisions={torch.float32},
    truncate_double=True,
    device=DEVICE,
    use_explicit_typing=True,
    enable_weight_streaming=True,
)

# Warm up for 3 iterations
_ = time_generate(trt_model, input_tensors, osl, 3)

使用自动预算大小运行

指定 enable_weight_streaming 编译选项后,将配置自动预算大小。此自动大小可能并不总是提供最佳解决方案,因为自动确定的预算缺乏对用户特定内存约束和使用模式的洞察。

# Weight streaming context to get current weight budget information
weight_streaming_ctx = torch_tensorrt.runtime.weight_streaming(trt_model)
# Measure the mean latency of the model with weight streaming
mean_latency = time_generate(trt_model, input_tensors, osl, 1)
# Calculate the percentage of current weight budget used
weight_budget_pct = (
    weight_streaming_ctx.device_budget / weight_streaming_ctx.total_device_budget * 100
)
print(
    f"Set weight streaming budget as {weight_budget_pct}%. {weight_streaming_ctx.device_budget} bytes out of {weight_streaming_ctx.total_device_budget}. mean latency = {mean_latency} ms"
)

使用权重流式传输上下文管理器运行

可以使用权重流式传输上下文管理器来限制权重流式传输预算。预算大小的允许范围为 0 到 ctx.total_device_budget。0 表示通过使用最少量的内存来实现最大的内存节省。值等于 ctx.total_device_budget 将禁用权重流式传输。如果创建了多个 trt 引擎,则预算按比例分配

# Use a context manager for weight streaming
with torch_tensorrt.runtime.weight_streaming(trt_model) as weight_streaming_ctx:
    # Get the total size of streamable weights in the engine
    streamable_budget = weight_streaming_ctx.total_device_budget

    # Scenario 1: Automatic weight streaming budget
    # Get the automatically determined weight streaming budget
    requested_budget = weight_streaming_ctx.get_automatic_weight_streaming_budget()
    # Set the device budget to the automatically determined value
    weight_streaming_ctx.device_budget = requested_budget
    # Measure the mean latency with automatic budget
    mean_latency = time_generate(trt_model, input_tensors, osl, 1)
    # Calculate the percentage of the weight budget used
    weight_budget_pct = (
        weight_streaming_ctx.device_budget
        / weight_streaming_ctx.total_device_budget
        * 100
    )
    print(
        f"Set auto weight streaming budget as {weight_budget_pct}%. {weight_streaming_ctx.device_budget} bytes out of {weight_streaming_ctx.total_device_budget}. mean latency = {mean_latency} ms"
    )

    # Scenario 2: Manual 10% weight streaming budget
    # Set the budget to 10% of the total streamable weights
    requested_budget = int(streamable_budget * 0.1)
    weight_streaming_ctx.device_budget = requested_budget
    # Measure the mean latency with 10% budget
    mean_latency = time_generate(trt_model, input_tensors, osl, 1)
    # Calculate the percentage of the weight budget used
    weight_budget_pct = (
        weight_streaming_ctx.device_budget
        / weight_streaming_ctx.total_device_budget
        * 100
    )
    print(
        f"Set weight streaming budget as {weight_budget_pct}%. {weight_streaming_ctx.device_budget} bytes out of {weight_streaming_ctx.total_device_budget}. mean latency = {mean_latency} ms"
    )

脚本的总运行时间: (0 分钟 0.000 秒)

由 Sphinx-Gallery 生成的图库

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取面向初学者和高级开发者的深入教程

查看教程

资源

查找开发资源并获得解答

查看资源