注意
转到末尾 下载完整的示例代码
权重流送¶
TensorRT 中的权重流送是一项强大的功能,旨在克服处理大型模型时的 GPU 内存限制。它通过在推理过程中将权重数据从主机(CPU)内存流送到 GPU 内存,从而能够在可用 GPU 内存之外运行更大的模型。
流送更多内存可能会导致性能下降。但是,如果流送权重允许用户运行更大的批量大小,则可以提高吞吐量。这种增加的吞吐量有时可以抵消流送权重造成的性能下降。最佳流送内存量因特定模型和硬件而异。尝试不同的内存限制有助于在流送开销和批量大小优势之间找到最佳平衡点。
本示例使用预训练的 Llama-2 模型,并展示如何通过 Torch-TensorRT 使用权重流送功能。
编译选项 - 构建具有权重流送功能的 TRT 引擎
运行时 API - 通过上下文管理器控制权重流送预算
导入和模型定义¶
import copy
import timeit
import numpy as np
import torch
import torch_tensorrt
from transformers import AutoModelForCausalLM
from utils import export_llm
def time_generate(model, inputs, output_seq_length, iterations=10):
"""
Measure the time for generating a sentence over certain number of iterations
"""
# We only support single input (B x seq_len) for LLMs now
input_seq = inputs[0]
with torch.no_grad():
timings = []
for _ in range(iterations):
start_time = timeit.default_timer()
inputs_copy = copy.copy(input_seq)
# Greedy decoding of the model. This generates up to max_tokens.
while inputs_copy.shape[1] <= output_seq_length:
outputs = model(inputs_copy)
logits = outputs.logits
next_token_logits = logits[:, -1, :]
next_tokens = torch.argmax(next_token_logits, dim=-1)
inputs_copy = torch.cat([inputs_copy, next_tokens[:, None]], dim=-1)
torch.cuda.synchronize()
end_time = timeit.default_timer()
timings.append(end_time - start_time)
times = np.array(timings)
time_mean_ms = np.mean(times) * 1000
return time_mean_ms
# Load the LLaMA-2 model
DEVICE = torch.device("cuda:0")
llama_path = "meta-llama/Llama-2-7b-chat-hf"
with torch.no_grad():
model = AutoModelForCausalLM.from_pretrained(
llama_path, use_cache=False, attn_implementation="eager"
).eval()
# Set input and output sequence lengths
isl = 128
osl = 256
# Create random input tensors
input_tensors = [torch.randint(0, 5, (1, isl), dtype=torch.int64).cuda()]
# Convert the model to half precision (FP16)
model = model.half()
# Exports the LLM model into an ExportedProgram with dynamic shapes.
llama2_ep = export_llm(model, input_tensors[0], max_seq_len=osl)
编译器选项¶
构建具有权重流送功能的引擎需要 enable_weight_streaming=True 选项和 use_explicit_typing=True 选项。 use_explicit_typing=True 选项会创建一个强类型网络,并且 enabled_precisions 选项中只允许 float32 精度。
# Create a TensorRT-compiled model
trt_model = torch_tensorrt.dynamo.compile(
llama2_ep,
inputs=input_tensors,
enabled_precisions={torch.float32},
truncate_double=True,
device=DEVICE,
use_explicit_typing=True,
enable_weight_streaming=True,
)
# Warm up for 3 iterations
_ = time_generate(trt_model, input_tensors, osl, 3)
使用自动预算大小运行¶
指定 enable_weight_streaming 编译选项后,将配置自动预算大小。此自动大小可能并非总是提供最佳解决方案,因为自动确定的预算无法深入了解用户的具体内存限制和使用模式
# Weight streaming context to get current weight budget information
weight_streaming_ctx = torch_tensorrt.runtime.weight_streaming(trt_model)
# Measure the mean latency of the model with weight streaming
mean_latency = time_generate(trt_model, input_tensors, osl, 1)
# Calculate the percentage of current weight budget used
weight_budget_pct = (
weight_streaming_ctx.device_budget / weight_streaming_ctx.total_device_budget * 100
)
print(
f"Set weight streaming budget as {weight_budget_pct}%. {weight_streaming_ctx.device_budget} bytes out of {weight_streaming_ctx.total_device_budget}. mean latency = {mean_latency} ms"
)
使用权重流送上下文管理器运行¶
可以通过使用权重流送上下文管理器来限制权重流送预算。预算大小的允许范围是 0 到 ctx.total_device_budget。0 表示通过使用最少量的内存来实现最大内存节省。等于 ctx.total_device_budget 的值将禁用权重流送。如果创建了多个 TRT 引擎,则预算将按比例分配。
# Use a context manager for weight streaming
with torch_tensorrt.runtime.weight_streaming(trt_model) as weight_streaming_ctx:
# Get the total size of streamable weights in the engine
streamable_budget = weight_streaming_ctx.total_device_budget
# Scenario 1: Automatic weight streaming budget
# Get the automatically determined weight streaming budget
requested_budget = weight_streaming_ctx.get_automatic_weight_streaming_budget()
# Set the device budget to the automatically determined value
weight_streaming_ctx.device_budget = requested_budget
# Measure the mean latency with automatic budget
mean_latency = time_generate(trt_model, input_tensors, osl, 1)
# Calculate the percentage of the weight budget used
weight_budget_pct = (
weight_streaming_ctx.device_budget
/ weight_streaming_ctx.total_device_budget
* 100
)
print(
f"Set auto weight streaming budget as {weight_budget_pct}%. {weight_streaming_ctx.device_budget} bytes out of {weight_streaming_ctx.total_device_budget}. mean latency = {mean_latency} ms"
)
# Scenario 2: Manual 10% weight streaming budget
# Set the budget to 10% of the total streamable weights
requested_budget = int(streamable_budget * 0.1)
weight_streaming_ctx.device_budget = requested_budget
# Measure the mean latency with 10% budget
mean_latency = time_generate(trt_model, input_tensors, osl, 1)
# Calculate the percentage of the weight budget used
weight_budget_pct = (
weight_streaming_ctx.device_budget
/ weight_streaming_ctx.total_device_budget
* 100
)
print(
f"Set weight streaming budget as {weight_budget_pct}%. {weight_streaming_ctx.device_budget} bytes out of {weight_streaming_ctx.total_device_budget}. mean latency = {mean_latency} ms"
)
脚本总运行时间: ( 0 分 0.000 秒)