retinanet_resnet50_fpn¶
- torchvision.models.detection.retinanet_resnet50_fpn(*, weights: Optional[RetinaNet_ResNet50_FPN_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1, trainable_backbone_layers: Optional[int] = None, **kwargs: Any) RetinaNet [源代码]¶
构建具有 ResNet-50-FPN 主干网络的 RetinaNet 模型。
警告
检测模块处于 Beta 阶段,不保证向后兼容性。
模型的输入应为张量列表,每个张量的形状为
[C, H, W]
,每个图像一个张量,并且应在0-1
范围内。不同图像可以具有不同大小。模型的行为根据其处于训练模式还是评估模式而变化。
在训练期间,模型期望同时接收输入张量和目标(字典列表),其中包含
boxes (
FloatTensor[N, 4]
):[x1, y1, x2, y2]
格式的真实框,其中0 <= x1 < x2 <= W
且0 <= y1 < y2 <= H
。labels (
Int64Tensor[N]
):每个真实框的类别标签
模型在训练期间返回
Dict[Tensor]
,其中包含分类和回归损失。在推理期间,模型仅需要输入张量,并将后处理的预测作为
List[Dict[Tensor]]
返回,每个输入图像一个。Dict
的字段如下,其中N
是检测次数boxes (
FloatTensor[N, 4]
):[x1, y1, x2, y2]
格式的预测框,其中0 <= x1 < x2 <= W
且0 <= y1 < y2 <= H
。labels (
Int64Tensor[N]
):每个检测的预测标签scores (
Tensor[N]
):每个检测的分数
有关输出的更多详细信息,您可以参考 实例分割模型。
示例
>>> model = torchvision.models.detection.retinanet_resnet50_fpn(weights=RetinaNet_ResNet50_FPN_Weights.DEFAULT) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x)
- 参数:
weights (
RetinaNet_ResNet50_FPN_Weights
, optional) – 要使用的预训练权重。有关更多详细信息和可能的值,请参阅下面的RetinaNet_ResNet50_FPN_Weights
。默认情况下,不使用预训练权重。progress (bool) – 如果为 True,则在 stderr 上显示下载进度条。默认为 True。
num_classes (int, optional) – 模型的输出类别数(包括背景)
weights_backbone (
ResNet50_Weights
, optional) – 主干网络的预训练权重。trainable_backbone_layers (int, optional) – 从最后一个块开始的可训练(非冻结)层数。有效值介于 0 和 5 之间,其中 5 表示所有主干网络层均可训练。如果传递
None
(默认值),则此值设置为 3。**kwargs – 传递给
torchvision.models.detection.RetinaNet
基类的参数。有关此类别的更多详细信息,请参阅 源代码。
- class torchvision.models.detection.RetinaNet_ResNet50_FPN_Weights(value)[源代码]¶
上面的模型构建器接受以下值作为
weights
参数。RetinaNet_ResNet50_FPN_Weights.DEFAULT
等同于RetinaNet_ResNet50_FPN_Weights.COCO_V1
。您也可以使用字符串,例如weights='DEFAULT'
或weights='COCO_V1'
。RetinaNet_ResNet50_FPN_Weights.COCO_V1:
这些权重是通过遵循与论文中类似的训练方案生成的。也可作为
RetinaNet_ResNet50_FPN_Weights.DEFAULT
使用。box_map (在 COCO-val2017 上)
36.4
类别
__background__, person, bicycle, … (省略 88 个)
min_size
height=1, width=1
num_params
34014999
recipe
GFLOPS
151.54
文件大小
130.3 MB
推理转换可在
RetinaNet_ResNet50_FPN_Weights.COCO_V1.transforms
中找到,并执行以下预处理操作:接受PIL.Image
、批量(B, C, H, W)
和单个(C, H, W)
图像torch.Tensor
对象。图像被重新缩放到[0.0, 1.0]
。