快捷方式

efficientnet_v2_l

torchvision.models.efficientnet_v2_l(*, weights: Optional[EfficientNet_V2_L_Weights] = None, progress: bool = True, **kwargs: Any) EfficientNet[source]

构建 EfficientNetV2-L 架构,出自 EfficientNetV2: Smaller Models and Faster Training

参数:
  • weights (EfficientNet_V2_L_Weights, optional) – 要使用的预训练权重。详见下方的 EfficientNet_V2_L_Weights,了解更多详情和可能的值。默认情况下,不使用预训练权重。

  • progress (bool, optional) – 如果为 True,则在 stderr 中显示下载进度条。默认为 True。

  • **kwargs – 传递给 torchvision.models.efficientnet.EfficientNet 基类的参数。请参阅 源代码 了解关于此类的更多详情。

class torchvision.models.EfficientNet_V2_L_Weights(value)[source]

上面的模型构建器接受以下值作为 weights 参数。EfficientNet_V2_L_Weights.DEFAULT 等同于 EfficientNet_V2_L_Weights.IMAGENET1K_V1。您也可以使用字符串,例如 weights='DEFAULT'weights='IMAGENET1K_V1'

EfficientNet_V2_L_Weights.IMAGENET1K_V1:

这些权重从原始论文移植而来。也可作为 EfficientNet_V2_L_Weights.DEFAULT 使用。

acc@1(在 ImageNet-1K 上)

85.808

acc@5(在 ImageNet-1K 上)

97.788

类别

丁鲷、金鱼、大白鲨等(省略 997 个)

最小尺寸

高=33,宽=33

配方

链接

参数数量

118515272

GFLOPS

56.08

文件大小

454.6 MB

推理转换可通过 EfficientNet_V2_L_Weights.IMAGENET1K_V1.transforms 获取,并执行以下预处理操作:接受 PIL.Image、批量 (B, C, H, W) 和单个 (C, H, W) 图像 torch.Tensor 对象。图像使用 interpolation=InterpolationMode.BICUBIC 重塑到 resize_size=[480] 大小,然后进行 crop_size=[480] 的中心裁剪。最后,值首先被重缩放到 [0.0, 1.0],然后使用 mean=[0.5, 0.5, 0.5]std=[0.5, 0.5, 0.5] 进行归一化。

文档

查阅 PyTorch 的全面开发者文档

查看文档

教程

获取针对初学者和高级开发者的深度教程

查看教程

资源

查找开发资源并获得问题解答

查看资源