快捷方式

efficientnet_b5

torchvision.models.efficientnet_b5(*, weights: Optional[EfficientNet_B5_Weights] = None, progress: bool = True, **kwargs: Any) EfficientNet[source]

来自 EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks 论文的 EfficientNet B5 模型架构。

参数:
  • weights (EfficientNet_B5_Weights, optional) – 要使用的预训练权重。 有关更多详细信息和可能的值,请参阅下方的 EfficientNet_B5_Weights。 默认情况下,不使用预训练权重。

  • progress (bool, optional) – 如果为 True,则向 stderr 显示下载进度条。 默认为 True。

  • **kwargs – 传递给 torchvision.models.efficientnet.EfficientNet 基类的参数。 有关此类别的更多详细信息,请参阅源代码

class torchvision.models.EfficientNet_B5_Weights(value)[source]

上面的模型构建器接受以下值作为 weights 参数。 EfficientNet_B5_Weights.DEFAULT 等同于 EfficientNet_B5_Weights.IMAGENET1K_V1。 您也可以使用字符串,例如 weights='DEFAULT'weights='IMAGENET1K_V1'

EfficientNet_B5_Weights.IMAGENET1K_V1:

这些权重从原始论文移植而来。 也可作为 EfficientNet_B5_Weights.DEFAULT 使用。

acc@1 (在 ImageNet-1K 上)

83.444

acc@5 (在 ImageNet-1K 上)

96.628

类别

tench, goldfish, great white shark, … (已省略 997 个)

min_size

height=1, width=1

recipe

link

num_params

30389784

GFLOPS

10.27

文件大小

116.9 MB

推理转换可在 EfficientNet_B5_Weights.IMAGENET1K_V1.transforms 中找到,并执行以下预处理操作:接受 PIL.Image、批处理 (B, C, H, W) 和单个 (C, H, W) 图像 torch.Tensor 对象。 图像大小调整为 resize_size=[456],使用 interpolation=InterpolationMode.BICUBIC,然后进行中心裁剪 crop_size=[456]。 最后,值首先重新缩放到 [0.0, 1.0],然后使用 mean=[0.485, 0.456, 0.406]std=[0.229, 0.224, 0.225] 进行归一化。

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取面向初学者和高级开发者的深入教程

查看教程

资源

查找开发资源并获得问题解答

查看资源