快捷方式

densenet201

torchvision.models.densenet201(*, weights: Optional[DenseNet201_Weights] = None, progress: bool = True, **kwargs: Any) DenseNet[源代码]

Densenet-201 模型,来自 Densely Connected Convolutional Networks

参数:
  • weights (DenseNet201_Weights, 可选) – 要使用的预训练权重。有关更多详细信息和可能的值,请参阅下面的 DenseNet201_Weights。默认情况下,不使用预训练权重。

  • progress (bool, 可选) – 如果为 True,则在 stderr 中显示下载进度条。默认为 True。

  • **kwargs – 传递给 torchvision.models.densenet.DenseNet 基类的参数。有关此类的更多详细信息,请参阅源代码

class torchvision.models.DenseNet201_Weights(value)[源代码]

上述模型构建器接受以下值作为 weights 参数。DenseNet201_Weights.DEFAULT 等同于 DenseNet201_Weights.IMAGENET1K_V1。您也可以使用字符串,例如 weights='DEFAULT'weights='IMAGENET1K_V1'

DenseNet201_Weights.IMAGENET1K_V1:

这些权重从 LuaTorch 移植而来。也可用作 DenseNet201_Weights.DEFAULT

acc@1 (在 ImageNet-1K 上)

76.896

acc@5 (在 ImageNet-1K 上)

93.37

最小尺寸

高度=29,宽度=29

类别

丁鲷鱼, 金鱼, 大白鲨, … (省略 997 个)

配方

链接

参数数量

20013928

GFLOPS

4.29

文件大小

77.4 MB

推理转换可在 DenseNet201_Weights.IMAGENET1K_V1.transforms 找到,并执行以下预处理操作:接受 PIL.Image、批处理的 (B, C, H, W) 和单个的 (C, H, W) 图像 torch.Tensor 对象。使用 interpolation=InterpolationMode.BILINEAR 将图像大小调整到 resize_size=[256],然后进行 crop_size=[224] 的中心裁剪。最后,将值先缩放到 [0.0, 1.0],然后使用 mean=[0.485, 0.456, 0.406]std=[0.229, 0.224, 0.225] 进行归一化。

文档

查阅全面的 PyTorch 开发者文档

查看文档

教程

获取面向初学者和高级开发者的深度教程

查看教程

资源

查找开发资源并获得问题解答

查看资源