快捷方式

SqueezeExcitation

class torchvision.ops.SqueezeExcitation(input_channels: int, squeeze_channels: int, activation: ~typing.Callable[[...], ~torch.nn.modules.module.Module] = <class 'torch.nn.modules.activation.ReLU'>, scale_activation: ~typing.Callable[[...], ~torch.nn.modules.module.Module] = <class 'torch.nn.modules.activation.Sigmoid'>)[源代码]

此模块实现了来自 https://arxiv.org/abs/1709.01507 的 Squeeze-and-Excitation 模块(参见图 1)。参数 activationscale_activation 分别对应于等式 3 中的 deltasigma

参数::
  • input_channels (int) – 输入图像中的通道数

  • squeeze_channels (int) – 压缩通道数

  • activation (Callable[..., torch.nn.Module], 可选) – delta 激活函数。默认值:torch.nn.ReLU

  • scale_activation (Callable[..., torch.nn.Module]) – sigma 激活函数。默认值:torch.nn.Sigmoid

forward(input: Tensor) Tensor[源代码]

定义每次调用时执行的计算。

应由所有子类覆盖。

注意

虽然前向传递的配方需要在此函数内定义,但应随后调用 Module 实例,而不是此函数,因为前者负责运行注册的钩子,而后者则会静默忽略它们。

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取针对初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获取问题解答

查看资源