Airflow¶
对于支持基于 Python 执行的管道,您可以直接使用 TorchX API。TorchX 被设计为可以通过编程 API 轻松集成到其他应用程序中。无需特殊的 Airflow 集成。
使用 TorchX,您可以使用 Airflow 进行管道编排,并在远程 GPU 集群上运行您的 PyTorch 应用程序(例如分布式训练)。
[1]:
import datetime
import pendulum
from airflow.utils.state import DagRunState, TaskInstanceState
from airflow.utils.types import DagRunType
from airflow.models.dag import DAG
from airflow.decorators import task
DATA_INTERVAL_START = pendulum.datetime(2021, 9, 13, tz="UTC")
DATA_INTERVAL_END = DATA_INTERVAL_START + datetime.timedelta(days=1)
要从 Airflow 启动 TorchX 作业,您可以创建一个 Airflow Python 任务来导入运行程序、启动作业并等待作业完成。如果您在远程集群上运行,则可能需要使用 virtualenv 任务来安装 torchx
包。
[2]:
@task(task_id=f'hello_torchx')
def run_torchx(message):
"""This is a function that will run within the DAG execution"""
from torchx.runner import get_runner
with get_runner() as runner:
# Run the utils.sh component on the local_cwd scheduler.
app_id = runner.run_component(
"utils.sh",
["echo", message],
scheduler="local_cwd",
)
# Wait for the the job to complete
status = runner.wait(app_id, wait_interval=1)
# Raise_for_status will raise an exception if the job didn't succeed
status.raise_for_status()
# Finally we can print all of the log lines from the TorchX job so it
# will show up in the workflow logs.
for line in runner.log_lines(app_id, "sh", k=0):
print(line, end="")
定义好任务后,我们可以将其放入 Airflow DAG 并像平常一样运行它。
[3]:
from torchx.schedulers.ids import make_unique
with DAG(
dag_id=make_unique('example_python_operator'),
schedule_interval=None,
start_date=DATA_INTERVAL_START,
catchup=False,
tags=['example'],
) as dag:
run_job = run_torchx("Hello, TorchX!")
dagrun = dag.create_dagrun(
state=DagRunState.RUNNING,
execution_date=DATA_INTERVAL_START,
data_interval=(DATA_INTERVAL_START, DATA_INTERVAL_END),
start_date=DATA_INTERVAL_END,
run_type=DagRunType.MANUAL,
)
ti = dagrun.get_task_instance(task_id="hello_torchx")
ti.task = dag.get_task(task_id="hello_torchx")
ti.run(ignore_ti_state=True)
assert ti.state == TaskInstanceState.SUCCESS
/tmp/ipykernel_52183/454499020.py:3 RemovedInAirflow3Warning: Param `schedule_interval` is deprecated and will be removed in a future release. Please use `schedule` instead.
[2024-07-17T02:04:16.962+0000] {taskinstance.py:2076} INFO - Dependencies all met for dep_context=non-requeueable deps ti=<TaskInstance: example_python_operator-mz5brbw7kwqxs.hello_torchx manual__2021-09-13T00:00:00+00:00 [None]>
[2024-07-17T02:04:16.968+0000] {taskinstance.py:2076} INFO - Dependencies all met for dep_context=requeueable deps ti=<TaskInstance: example_python_operator-mz5brbw7kwqxs.hello_torchx manual__2021-09-13T00:00:00+00:00 [None]>
[2024-07-17T02:04:16.969+0000] {taskinstance.py:2306} INFO - Starting attempt 1 of 1
[2024-07-17T02:04:16.970+0000] {taskinstance.py:2388} WARNING - cannot record queued_duration for task hello_torchx because previous state change time has not been saved
[2024-07-17T02:04:16.981+0000] {taskinstance.py:2330} INFO - Executing <Task(_PythonDecoratedOperator): hello_torchx> on 2021-09-13 00:00:00+00:00
[2024-07-17T02:04:17.253+0000] {taskinstance.py:2648} INFO - Exporting env vars: AIRFLOW_CTX_DAG_OWNER='airflow' AIRFLOW_CTX_DAG_ID='example_python_operator-mz5brbw7kwqxs' AIRFLOW_CTX_TASK_ID='hello_torchx' AIRFLOW_CTX_EXECUTION_DATE='2021-09-13T00:00:00+00:00' AIRFLOW_CTX_TRY_NUMBER='1' AIRFLOW_CTX_DAG_RUN_ID='manual__2021-09-13T00:00:00+00:00'
[2024-07-17T02:04:17.255+0000] {taskinstance.py:430} INFO - ::endgroup::
[2024-07-17T02:04:17.953+0000] {api.py:72} INFO - Tracker configurations: {}
[2024-07-17T02:04:17.957+0000] {local_scheduler.py:771} INFO - Log directory not set in scheduler cfg. Creating a temporary log dir that will be deleted on exit. To preserve log directory set the `log_dir` cfg option
[2024-07-17T02:04:17.957+0000] {local_scheduler.py:777} INFO - Log directory is: /tmp/torchx_39w81v6k
Hello, TorchX!
[2024-07-17T02:04:18.062+0000] {python.py:237} INFO - Done. Returned value was: None
[2024-07-17T02:04:18.063+0000] {taskinstance.py:441} INFO - ::group::Post task execution logs
[2024-07-17T02:04:18.071+0000] {taskinstance.py:1206} INFO - Marking task as SUCCESS. dag_id=example_python_operator-mz5brbw7kwqxs, task_id=hello_torchx, run_id=manual__2021-09-13T00:00:00+00:00, execution_date=20210913T000000, start_date=20240717T020416, end_date=20240717T020418
如果一切顺利,您应该看到 Hello, TorchX!
打印在上面。
下一步¶
查看 运行程序 API 文档 以了解有关 TorchX 编程用法的更多信息
浏览 内置组件 集合,这些组件可用于您的 Airflow 管道