import torch
model = torch.hub.load('XingangPan/IBN-Net', 'resnet50_ibn_a', pretrained=True)
model.eval()
所有预训练模型都要求输入图像进行相同的归一化处理,即形状为 (3 x H x W)
的 3 通道 RGB 图像 mini-batch,其中 H
和 W
预期至少为 224
。图像必须加载到 [0, 1]
的范围,然后使用 mean = [0.485, 0.456, 0.406]
和 std = [0.229, 0.224, 0.225]
进行归一化。
以下是一个示例执行过程。
# Download an example image from the pytorch website
import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)
# sample execution (requires torchvision)
from PIL import Image
from torchvision import transforms
input_image = Image.open(filename)
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch)
# Tensor of shape 1000, with confidence scores over ImageNet's 1000 classes
print(output[0])
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(output[0], dim=0)
print(probabilities)
# Download ImageNet labels
!wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
# Read the categories
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Show top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
模型描述
IBN-Net 是一种具有领域/外观不变性的 CNN 模型。受风格迁移工作的启发,IBN-Net 精心将实例归一化和批量归一化统一在一个深度网络中。它提供了一种简单的方法来增加建模和泛化能力,而无需增加模型复杂度。IBN-Net 特别适用于跨领域或行人/车辆重识别任务。
使用预训练模型在 ImageNet 数据集上的对应准确率如下所示。
模型名称 | Top-1 准确率 | Top-5 准确率 |
---|---|---|
resnet50_ibn_a | 77.46 | 93.68 |
resnet101_ibn_a | 78.61 | 94.41 |
resnext101_ibn_a | 79.12 | 94.58 |
se_resnet101_ibn_a | 78.75 | 94.49 |
在两个 Re-ID 基准数据集 Market1501 和 DukeMTMC-reID 上的 rank1/mAP 如下所示(来自 michuanhaohao/reid-strong-baseline)。
主干网络 | Market1501 | DukeMTMC-reID |
---|---|---|
ResNet50 | 94.5 (85.9) | 86.4 (76.4) |
ResNet101 | 94.5 (87.1) | 87.6 (77.6) |
SeResNet50 | 94.4 (86.3) | 86.4 (76.5) |
SeResNet101 | 94.6 (87.3) | 87.5 (78.0) |
SeResNeXt50 | 94.9 (87.6) | 88.0 (78.3) |
SeResNeXt101 | 95.0 (88.0) | 88.4 (79.0) |
ResNet50-IBN-a | 95.0 (88.2) | 90.1 (79.1) |