模型描述

MiDaS 从单张图像计算相对逆深度。该仓库提供了多种模型,涵盖了从小巧、高速模型到提供最高精度的超大型模型等不同的用例。这些模型已使用多目标优化在 10 个不同的数据集上进行训练,以确保在各种输入上都具有高质量。

依赖项

MiDaS 依赖于 timm。安装方法如下:

pip install timm

示例用法

从 PyTorch 主页下载图像

import cv2
import torch
import urllib.request

import matplotlib.pyplot as plt

url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)

加载模型(有关概述,请参阅 https://github.com/intel-isl/MiDaS/#Accuracy

model_type = "DPT_Large"     # MiDaS v3 - Large     (highest accuracy, slowest inference speed)
#model_type = "DPT_Hybrid"   # MiDaS v3 - Hybrid    (medium accuracy, medium inference speed)
#model_type = "MiDaS_small"  # MiDaS v2.1 - Small   (lowest accuracy, highest inference speed)

midas = torch.hub.load("intel-isl/MiDaS", model_type)

如果可用,将模型移动到 GPU

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
midas.to(device)
midas.eval()

加载变换以调整图像大小并进行归一化,适用于大型或小型模型

midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")

if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
    transform = midas_transforms.dpt_transform
else:
    transform = midas_transforms.small_transform

加载图像并应用变换

img = cv2.imread(filename)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

input_batch = transform(img).to(device)

预测并调整回原始分辨率

with torch.no_grad():
    prediction = midas(input_batch)

    prediction = torch.nn.functional.interpolate(
        prediction.unsqueeze(1),
        size=img.shape[:2],
        mode="bicubic",
        align_corners=False,
    ).squeeze()

output = prediction.cpu().numpy()

显示结果

plt.imshow(output)
# plt.show()

参考文献

迈向鲁棒单目深度估计:混合数据集实现零样本跨数据集迁移

用于密集预测的视觉 Transformer

如果您使用我们的模型,请引用我们的论文

@article{Ranftl2020,
	author    = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun},
	title     = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer},
	journal   = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
	year      = {2020},
}
@article{Ranftl2021,
	author    = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun},
	title     = {Vision Transformers for Dense Prediction},
	journal   = {ArXiv preprint},
	year      = {2021},
}