模型描述
PyTorch-Transformers(原名 pytorch-pretrained-bert
)是一个用于自然语言处理 (NLP) 的最先进预训练模型库。
该库目前包含以下模型的 PyTorch 实现、预训练模型权重、使用脚本和转换实用程序
- BERT(来自 Google),与论文 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 一同发布,作者为 Jacob Devlin、Ming-Wei Chang、Kenton Lee 和 Kristina Toutanova。
- GPT(来自 OpenAI),与论文 Improving Language Understanding by Generative Pre-Training 一同发布,作者为 Alec Radford、Karthik Narasimhan、Tim Salimans 和 Ilya Sutskever。
- GPT-2(来自 OpenAI),与论文 Language Models are Unsupervised Multitask Learners 一同发布,作者为 Alec Radford、Jeffrey Wu、Rewon Child、David Luan、Dario Amodei 和 Ilya Sutskever。
- Transformer-XL(来自 Google/CMU),与论文 Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context 一同发布,作者为 Zihang Dai、Zhilin Yang、Yiming Yang、Jaime Carbonell、Quoc V. Le、Ruslan Salakhutdinov。
- XLNet(来自 Google/CMU),与论文 XLNet: Generalized Autoregressive Pretraining for Language Understanding 一同发布,作者为 Zhilin Yang、Zihang Dai、Yiming Yang、Jaime Carbonell、Ruslan Salakhutdinov、Quoc V. Le。
- XLM(来自 Facebook),与论文 Cross-lingual Language Model Pretraining 一同发布,作者为 Guillaume Lample 和 Alexis Conneau。
- RoBERTa(来自 Facebook),与论文 Robustly Optimized BERT Pretraining Approach 一同发布,作者为 Yinhan Liu、Myle Ott、Naman Goyal、Jingfei Du、Mandar Joshi、Danqi Chen、Omer Levy、Mike Lewis、Luke Zettlemoyer、Veselin Stoyanov。
- DistilBERT(来自 HuggingFace),与博客文章 Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT 一同发布,作者为 Victor Sanh、Lysandre Debut 和 Thomas Wolf。
此处提供的组件基于 pytorch-transformers
库的 AutoModel
和 AutoTokenizer
类。
要求
与大多数其他 PyTorch Hub 模型不同,BERT 需要安装一些额外的 Python 包。
pip install tqdm boto3 requests regex sentencepiece sacremoses
使用方法
以下是可用的方法
config
:返回与指定模型或 pth 对应的配置项。tokenizer
:返回与指定模型或路径对应的 tokenizermodel
:返回与指定模型或路径对应的模型modelForCausalLM
:返回带有语言建模头的模型,对应于指定的模型或路径modelForSequenceClassification
:返回带有序列分类器的模型,对应于指定的模型或路径modelForQuestionAnswering
:返回带有问题解答头的模型,对应于指定的模型或路径
所有这些方法都共享以下参数:pretrained_model_or_path
,它是一个字符串,用于标识预训练模型或路径,从中将返回一个实例。每个模型都有几个可用的检查点,详细信息如下
可用模型在 transformers 文档的模型页面上列出。
文档
以下是一些示例,详细说明了每种可用方法的使用。
分词器
tokenizer 对象允许将字符串转换为不同模型可以理解的 tokens。每个模型都有自己的 tokenizer,并且某些分词方法在不同的 tokenizer 之间有所不同。完整的文档可以在此处找到。
import torch
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'tokenizer', 'bert-base-uncased') # Download vocabulary from S3 and cache.
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'tokenizer', './test/bert_saved_model/') # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`
模型
model 对象是一个从 nn.Module
继承的模型实例。每个模型都附带其保存/加载方法,可以从本地文件或目录,也可以从预训练配置(请参阅前面描述的 config
)。每个模型的工作方式都不同,不同模型的完整概述可以在文档中找到。
import torch
model = torch.hub.load('huggingface/pytorch-transformers', 'model', 'bert-base-uncased') # Download model and configuration from S3 and cache.
model = torch.hub.load('huggingface/pytorch-transformers', 'model', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/pytorch-transformers', 'model', 'bert-base-uncased', output_attentions=True) # Update configuration during loading
assert model.config.output_attentions == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = torch.hub.load('huggingface/pytorch-transformers', 'model', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
带有语言建模头的模型
先前提到的带有附加语言建模头的 model
实例。
import torch
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', 'gpt2') # Download model and configuration from huggingface.co and cache.
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', './test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', 'gpt2', output_attentions=True) # Update configuration during loading
assert model.config.output_attentions == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_pretrained('./tf_model/gpt_tf_model_config.json')
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', './tf_model/gpt_tf_checkpoint.ckpt.index', from_tf=True, config=config)
带有序列分类头的模型
先前提到的带有附加序列分类头的 model
实例。
import torch
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForSequenceClassification', 'bert-base-uncased') # Download model and configuration from S3 and cache.
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForSequenceClassification', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForSequenceClassification', 'bert-base-uncased', output_attention=True) # Update configuration during loading
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForSequenceClassification', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
带有问题解答头的模型
先前提到的带有附加问题解答头的 model
实例。
import torch
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForQuestionAnswering', 'bert-base-uncased') # Download model and configuration from S3 and cache.
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForQuestionAnswering', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForQuestionAnswering', 'bert-base-uncased', output_attention=True) # Update configuration during loading
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForQuestionAnswering', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
配置
配置是可选的。配置对象包含有关模型的信息,例如头/层数,模型是否应输出 attentions 或 hidden states,或者是否应针对 TorchScript 进行调整。许多参数可用,有些参数特定于每个模型。完整的文档可以在此处找到。
import torch
config = torch.hub.load('huggingface/pytorch-transformers', 'config', 'bert-base-uncased') # Download configuration from S3 and cache.
config = torch.hub.load('huggingface/pytorch-transformers', 'config', './test/bert_saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
config = torch.hub.load('huggingface/pytorch-transformers', 'config', './test/bert_saved_model/my_configuration.json')
config = torch.hub.load('huggingface/pytorch-transformers', 'config', 'bert-base-uncased', output_attention=True, foo=False)
assert config.output_attention == True
config, unused_kwargs = torch.hub.load('huggingface/pytorch-transformers', 'config', 'bert-base-uncased', output_attention=True, foo=False, return_unused_kwargs=True)
assert config.output_attention == True
assert unused_kwargs == {'foo': False}
# Using the configuration with a model
config = torch.hub.load('huggingface/pytorch-transformers', 'config', 'bert-base-uncased')
config.output_attentions = True
config.output_hidden_states = True
model = torch.hub.load('huggingface/pytorch-transformers', 'model', 'bert-base-uncased', config=config)
# Model will now output attentions and hidden states as well
示例用法
这是一个示例,说明如何对输入文本进行分词,以将其作为 BERT 模型的输入,然后获取由该模型计算的 hidden states,或使用语言建模 BERT 模型预测 masked tokens。
首先,对输入进行分词
import torch
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'tokenizer', 'bert-base-cased')
text_1 = "Who was Jim Henson ?"
text_2 = "Jim Henson was a puppeteer"
# Tokenized input with special tokens around it (for BERT: [CLS] at the beginning and [SEP] at the end)
indexed_tokens = tokenizer.encode(text_1, text_2, add_special_tokens=True)
使用 BertModel
将输入句子编码为最后一层 hidden-states 序列
# Define sentence A and B indices associated to 1st and 2nd sentences (see paper)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
# Convert inputs to PyTorch tensors
segments_tensors = torch.tensor([segments_ids])
tokens_tensor = torch.tensor([indexed_tokens])
model = torch.hub.load('huggingface/pytorch-transformers', 'model', 'bert-base-cased')
with torch.no_grad():
encoded_layers, _ = model(tokens_tensor, token_type_ids=segments_tensors)
使用 modelForMaskedLM
预测 BERT 的 masked token
# Mask a token that we will try to predict back with `BertForMaskedLM`
masked_index = 8
indexed_tokens[masked_index] = tokenizer.mask_token_id
tokens_tensor = torch.tensor([indexed_tokens])
masked_lm_model = torch.hub.load('huggingface/pytorch-transformers', 'modelForMaskedLM', 'bert-base-cased')
with torch.no_grad():
predictions = masked_lm_model(tokens_tensor, token_type_ids=segments_tensors)
# Get the predicted token
predicted_index = torch.argmax(predictions[0][0], dim=1)[masked_index].item()
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
assert predicted_token == 'Jim'
使用 modelForQuestionAnswering
使用 BERT 进行问题解答
question_answering_model = torch.hub.load('huggingface/pytorch-transformers', 'modelForQuestionAnswering', 'bert-large-uncased-whole-word-masking-finetuned-squad')
question_answering_tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'tokenizer', 'bert-large-uncased-whole-word-masking-finetuned-squad')
# The format is paragraph first and then question
text_1 = "Jim Henson was a puppeteer"
text_2 = "Who was Jim Henson ?"
indexed_tokens = question_answering_tokenizer.encode(text_1, text_2, add_special_tokens=True)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
segments_tensors = torch.tensor([segments_ids])
tokens_tensor = torch.tensor([indexed_tokens])
# Predict the start and end positions logits
with torch.no_grad():
out = question_answering_model(tokens_tensor, token_type_ids=segments_tensors)
# get the highest prediction
answer = question_answering_tokenizer.decode(indexed_tokens[torch.argmax(out.start_logits):torch.argmax(out.end_logits)+1])
assert answer == "puppeteer"
# Or get the total loss which is the sum of the CrossEntropy loss for the start and end token positions (set model to train mode before if used for training)
start_positions, end_positions = torch.tensor([12]), torch.tensor([14])
multiple_choice_loss = question_answering_model(tokens_tensor, token_type_ids=segments_tensors, start_positions=start_positions, end_positions=end_positions)
使用 modelForSequenceClassification
使用 BERT 进行释义分类
sequence_classification_model = torch.hub.load('huggingface/pytorch-transformers', 'modelForSequenceClassification', 'bert-base-cased-finetuned-mrpc')
sequence_classification_tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'tokenizer', 'bert-base-cased-finetuned-mrpc')
text_1 = "Jim Henson was a puppeteer"
text_2 = "Who was Jim Henson ?"
indexed_tokens = sequence_classification_tokenizer.encode(text_1, text_2, add_special_tokens=True)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
segments_tensors = torch.tensor([segments_ids])
tokens_tensor = torch.tensor([indexed_tokens])
# Predict the sequence classification logits
with torch.no_grad():
seq_classif_logits = sequence_classification_model(tokens_tensor, token_type_ids=segments_tensors)
predicted_labels = torch.argmax(seq_classif_logits[0]).item()
assert predicted_labels == 0 # In MRPC dataset this means the two sentences are not paraphrasing each other
# Or get the sequence classification loss (set model to train mode before if used for training)
labels = torch.tensor([1])
seq_classif_loss = sequence_classification_model(tokens_tensor, token_type_ids=segments_tensors, labels=labels)