WandaSparsifier¶
- class torchao.sparsity.WandaSparsifier(sparsity_level: float = 0.5, semi_structured_block_size: Optional[int] = None)[source]¶
Wanda 稀疏器
Wanda(通过权重和激活进行剪枝),在 https://arxiv.org/abs/2306.11695 中提出,是一种激活感知剪枝方法。该稀疏器基于输入激活范数和权重幅度的乘积来移除权重。
此稀疏器由三个变量控制:1. sparsity_level 定义了被置零的稀疏块的数量;
- 参数:
sparsity_level – 目标稀疏度;
model – 要稀疏化的模型;
- prepare(model: Module, config: List[Dict]) None [source]¶
通过添加参数化来准备模型。
注意
The model is modified inplace. If you need to preserve the original model, use copy.deepcopy.
- squash_mask(params_to_keep: Optional[Tuple[str, ...]] = None, params_to_keep_per_layer: Optional[Dict[str, Tuple[str, ...]]] = None, *args, **kwargs)[source]¶
将稀疏掩码压缩到适当的张量中。
如果设置了 params_to_keep 或 params_to_keep_per_layer 中的任何一个,则模块将附加一个 sparse_params 字典。
- 参数:
params_to_keep – 要保存在模块中的键的列表,或表示将保存稀疏参数的模块和键的字典
params_to_keep_per_layer – 用于指定应为特定层保存的参数的字典。字典中的键应为模块 fqn,而值应为字符串列表,其中包含要在 sparse_params 中保存的变量的名称
示例
>>> # xdoctest: +SKIP("locals are undefined") >>> # Don't save any sparse params >>> sparsifier.squash_mask() >>> hasattr(model.submodule1, 'sparse_params') False
>>> # Keep sparse params per layer >>> sparsifier.squash_mask( ... params_to_keep_per_layer={ ... 'submodule1.linear1': ('foo', 'bar'), ... 'submodule2.linear42': ('baz',) ... }) >>> print(model.submodule1.linear1.sparse_params) {'foo': 42, 'bar': 24} >>> print(model.submodule2.linear42.sparse_params) {'baz': 0.1}
>>> # Keep sparse params for all layers >>> sparsifier.squash_mask(params_to_keep=('foo', 'bar')) >>> print(model.submodule1.linear1.sparse_params) {'foo': 42, 'bar': 24} >>> print(model.submodule2.linear42.sparse_params) {'foo': 42, 'bar': 24}
>>> # Keep some sparse params for all layers, and specific ones for >>> # some other layers >>> sparsifier.squash_mask( ... params_to_keep=('foo', 'bar'), ... params_to_keep_per_layer={ ... 'submodule2.linear42': ('baz',) ... }) >>> print(model.submodule1.linear1.sparse_params) {'foo': 42, 'bar': 24} >>> print(model.submodule2.linear42.sparse_params) {'foo': 42, 'bar': 24, 'baz': 0.1}