• 文档 >
  • 使用 Tacotron2 进行文本转语音 >
  • 旧版本 (稳定)
快捷键

使用 Tacotron2 进行文本转语音

作者: 杨耀元, 平本元

概述

本教程展示了如何使用 torchaudio 中预训练的 Tacotron2 构建文本转语音管道。

文本转语音管道如下所示

  1. 文本预处理

    首先,将输入文本编码为符号列表。在本教程中,我们将使用英语字符和音素作为符号。

  2. 声谱图生成

    从编码的文本生成声谱图。我们使用 Tacotron2 模型来完成此操作。

  3. 时域转换

    最后一步是将声谱图转换为波形。从声谱图生成语音的过程也称为声码器。在本教程中,使用了三个不同的声码器,WaveRNNGriffinLimNvidia 的 WaveGlow.

下图说明了整个过程。

https://download.pytorch.org/torchaudio/tutorial-assets/tacotron2_tts_pipeline.png

所有相关组件都捆绑在 torchaudio.pipelines.Tacotron2TTSBundle 中,但本教程也将涵盖底层过程。

准备

首先,我们安装必要的依赖项。除了 torchaudio 之外,还需要 DeepPhonemizer 来执行基于音素的编码。

%%bash
pip3 install deep_phonemizer
import torch
import torchaudio

torch.random.manual_seed(0)
device = "cuda" if torch.cuda.is_available() else "cpu"

print(torch.__version__)
print(torchaudio.__version__)
print(device)
2.4.0
2.4.0
cuda
import IPython
import matplotlib.pyplot as plt

文本处理

基于字符的编码

在本节中,我们将介绍基于字符的编码的工作原理。

由于预训练的 Tacotron2 模型需要特定的符号表集,因此 torchaudio 中也提供了相同的功能。但是,我们将首先手动实现编码以帮助理解。

首先,我们定义符号集 '_-!\'(),.:;? abcdefghijklmnopqrstuvwxyz'。然后,我们将输入文本的每个字符映射到表中对应符号的索引。表中不存在的符号将被忽略。

symbols = "_-!'(),.:;? abcdefghijklmnopqrstuvwxyz"
look_up = {s: i for i, s in enumerate(symbols)}
symbols = set(symbols)


def text_to_sequence(text):
    text = text.lower()
    return [look_up[s] for s in text if s in symbols]


text = "Hello world! Text to speech!"
print(text_to_sequence(text))
[19, 16, 23, 23, 26, 11, 34, 26, 29, 23, 15, 2, 11, 31, 16, 35, 31, 11, 31, 26, 11, 30, 27, 16, 16, 14, 19, 2]

如上所述,符号表和索引必须与预训练的 Tacotron2 模型预期的相同。 torchaudio 提供了相同的转换以及预训练模型。您可以实例化并使用此类转换,如下所示。

processor = torchaudio.pipelines.TACOTRON2_WAVERNN_CHAR_LJSPEECH.get_text_processor()

text = "Hello world! Text to speech!"
processed, lengths = processor(text)

print(processed)
print(lengths)
tensor([[19, 16, 23, 23, 26, 11, 34, 26, 29, 23, 15,  2, 11, 31, 16, 35, 31, 11,
         31, 26, 11, 30, 27, 16, 16, 14, 19,  2]])
tensor([28], dtype=torch.int32)

注意:我们的手动编码输出和 torchaudio text_processor 输出匹配(这意味着我们正确地重新实现了库在内部执行的操作)。它接受文本或文本列表作为输入。当提供文本列表时,返回的 lengths 变量表示输出批次中每个处理过的标记的有效长度。

可以按如下方式检索中间表示

print([processor.tokens[i] for i in processed[0, : lengths[0]]])
['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', ' ', 't', 'e', 'x', 't', ' ', 't', 'o', ' ', 's', 'p', 'e', 'e', 'c', 'h', '!']

基于音素的编码

基于音素的编码类似于基于字符的编码,但它使用基于音素的符号表和 G2P(音素到语音)模型。

G2P 模型的详细信息超出了本教程的范围,我们只关注转换的样子。

与基于字符的编码类似,编码过程预计将与预训练的 Tacotron2 模型的训练内容相匹配。 torchaudio 有一个接口来创建这个过程。

以下代码说明了如何创建和使用这个过程。在幕后,使用 DeepPhonemizer 包创建了 G2P 模型,并获取了 DeepPhonemizer 作者发布的预训练权重。

bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH

processor = bundle.get_text_processor()

text = "Hello world! Text to speech!"
with torch.inference_mode():
    processed, lengths = processor(text)

print(processed)
print(lengths)
  0%|          | 0.00/63.6M [00:00<?, ?B/s]
  0%|          | 128k/63.6M [00:00<01:32, 721kB/s]
  1%|          | 384k/63.6M [00:00<00:57, 1.14MB/s]
  1%|1         | 768k/63.6M [00:00<00:40, 1.62MB/s]
  2%|1         | 1.25M/63.6M [00:00<00:30, 2.12MB/s]
  3%|2         | 1.75M/63.6M [00:00<00:27, 2.40MB/s]
  4%|3         | 2.38M/63.6M [00:01<00:22, 2.80MB/s]
  5%|4         | 3.00M/63.6M [00:01<00:20, 3.07MB/s]
  6%|5         | 3.75M/63.6M [00:01<00:18, 3.47MB/s]
  7%|7         | 4.50M/63.6M [00:01<00:16, 3.75MB/s]
  8%|8         | 5.38M/63.6M [00:01<00:14, 4.15MB/s]
 10%|#         | 6.38M/63.6M [00:01<00:12, 4.64MB/s]
 12%|#1        | 7.38M/63.6M [00:02<00:11, 5.00MB/s]
 13%|#3        | 8.50M/63.6M [00:02<00:10, 5.47MB/s]
 16%|#5        | 9.88M/63.6M [00:02<00:09, 6.20MB/s]
 18%|#7        | 11.2M/63.6M [00:02<00:08, 6.73MB/s]
 20%|##        | 12.8M/63.6M [00:02<00:07, 7.32MB/s]
 23%|##2       | 14.5M/63.6M [00:03<00:06, 8.14MB/s]
 26%|##5       | 16.4M/63.6M [00:03<00:05, 8.96MB/s]
 29%|##9       | 18.5M/63.6M [00:03<00:04, 9.95MB/s]
 33%|###2      | 20.8M/63.6M [00:03<00:04, 10.9MB/s]
 37%|###6      | 23.4M/63.6M [00:03<00:03, 12.1MB/s]
 41%|####1     | 26.1M/63.6M [00:03<00:02, 13.3MB/s]
 46%|####5     | 29.1M/63.6M [00:04<00:02, 14.7MB/s]
 49%|####8     | 31.0M/63.6M [00:04<00:02, 15.6MB/s]
 54%|#####4    | 34.4M/63.6M [00:04<00:01, 17.0MB/s]
 60%|#####9    | 37.9M/63.6M [00:04<00:01, 21.1MB/s]
 63%|######3   | 40.4M/63.6M [00:04<00:01, 19.2MB/s]
 68%|######7   | 43.2M/63.6M [00:04<00:00, 21.6MB/s]
 74%|#######4  | 47.4M/63.6M [00:04<00:00, 22.8MB/s]
 80%|########  | 51.0M/63.6M [00:05<00:00, 26.2MB/s]
 87%|########7 | 55.5M/63.6M [00:05<00:00, 26.5MB/s]
 94%|#########4| 59.9M/63.6M [00:05<00:00, 30.9MB/s]
100%|##########| 63.6M/63.6M [00:05<00:00, 12.2MB/s]
/pytorch/audio/ci_env/lib/python3.10/site-packages/dp/model/model.py:306: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  checkpoint = torch.load(checkpoint_path, map_location=device)
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/nn/modules/transformer.py:307: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)
  warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}")
tensor([[54, 20, 65, 69, 11, 92, 44, 65, 38,  2, 11, 81, 40, 64, 79, 81, 11, 81,
         20, 11, 79, 77, 59, 37,  2]])
tensor([25], dtype=torch.int32)

请注意,编码后的值与基于字符的编码示例不同。

中间表示如下所示。

print([processor.tokens[i] for i in processed[0, : lengths[0]]])
['HH', 'AH', 'L', 'OW', ' ', 'W', 'ER', 'L', 'D', '!', ' ', 'T', 'EH', 'K', 'S', 'T', ' ', 'T', 'AH', ' ', 'S', 'P', 'IY', 'CH', '!']

声谱图生成

Tacotron2 是我们用于从编码的文本生成声谱图的模型。有关模型的详细信息,请参阅 论文.

使用预训练的权重很容易实例化 Tacotron2 模型,但是,请注意,Tacotron2 模型的输入需要由匹配的文本处理器处理。

torchaudio.pipelines.Tacotron2TTSBundle 将匹配的模型和处理器捆绑在一起,以便于创建管道。

有关可用捆绑包及其用法,请参阅 Tacotron2TTSBundle.

bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH
processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)

text = "Hello world! Text to speech!"

with torch.inference_mode():
    processed, lengths = processor(text)
    processed = processed.to(device)
    lengths = lengths.to(device)
    spec, _, _ = tacotron2.infer(processed, lengths)


_ = plt.imshow(spec[0].cpu().detach(), origin="lower", aspect="auto")
tacotron2 pipeline tutorial
/pytorch/audio/ci_env/lib/python3.10/site-packages/dp/model/model.py:306: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  checkpoint = torch.load(checkpoint_path, map_location=device)
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/nn/modules/transformer.py:307: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)
  warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}")
Downloading: "https://download.pytorch.org/torchaudio/models/tacotron2_english_phonemes_1500_epochs_wavernn_ljspeech.pth" to /root/.cache/torch/hub/checkpoints/tacotron2_english_phonemes_1500_epochs_wavernn_ljspeech.pth

  0%|          | 0.00/107M [00:00<?, ?B/s]
 15%|#4        | 16.0M/107M [00:00<00:01, 94.6MB/s]
 29%|##8       | 30.9M/107M [00:00<00:00, 103MB/s]
 38%|###8      | 40.9M/107M [00:00<00:00, 89.2MB/s]
 46%|####6     | 49.5M/107M [00:00<00:00, 80.4MB/s]
 60%|#####9    | 64.0M/107M [00:00<00:00, 77.1MB/s]
 74%|#######4  | 80.0M/107M [00:01<00:00, 60.7MB/s]
 89%|########9 | 95.8M/107M [00:01<00:00, 61.3MB/s]
 95%|#########4| 102M/107M [00:01<00:00, 58.7MB/s]
100%|##########| 107M/107M [00:01<00:00, 63.2MB/s]

请注意,Tacotron2.infer 方法执行多项式采样,因此,生成声谱图的过程会产生随机性。

def plot():
    fig, ax = plt.subplots(3, 1)
    for i in range(3):
        with torch.inference_mode():
            spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
        print(spec[0].shape)
        ax[i].imshow(spec[0].cpu().detach(), origin="lower", aspect="auto")


plot()
tacotron2 pipeline tutorial
torch.Size([80, 190])
torch.Size([80, 184])
torch.Size([80, 185])

波形生成

生成声谱图后,最后一步是使用声码器从声谱图中恢复波形。

torchaudio 提供基于 GriffinLimWaveRNN 的声码器。

WaveRNN 声码器

承接上一节,我们可以从同一个包中实例化匹配的 WaveRNN 模型。

bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH

processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)
vocoder = bundle.get_vocoder().to(device)

text = "Hello world! Text to speech!"

with torch.inference_mode():
    processed, lengths = processor(text)
    processed = processed.to(device)
    lengths = lengths.to(device)
    spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
    waveforms, lengths = vocoder(spec, spec_lengths)
/pytorch/audio/ci_env/lib/python3.10/site-packages/dp/model/model.py:306: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  checkpoint = torch.load(checkpoint_path, map_location=device)
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/nn/modules/transformer.py:307: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)
  warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}")
Downloading: "https://download.pytorch.org/torchaudio/models/wavernn_10k_epochs_8bits_ljspeech.pth" to /root/.cache/torch/hub/checkpoints/wavernn_10k_epochs_8bits_ljspeech.pth

  0%|          | 0.00/16.7M [00:00<?, ?B/s]
 96%|#########6| 16.0M/16.7M [00:00<00:00, 137MB/s]
100%|##########| 16.7M/16.7M [00:00<00:00, 138MB/s]
def plot(waveforms, spec, sample_rate):
    waveforms = waveforms.cpu().detach()

    fig, [ax1, ax2] = plt.subplots(2, 1)
    ax1.plot(waveforms[0])
    ax1.set_xlim(0, waveforms.size(-1))
    ax1.grid(True)
    ax2.imshow(spec[0].cpu().detach(), origin="lower", aspect="auto")
    return IPython.display.Audio(waveforms[0:1], rate=sample_rate)


plot(waveforms, spec, vocoder.sample_rate)
tacotron2 pipeline tutorial


Griffin-Lim 声码器

使用 Griffin-Lim 声码器与 WaveRNN 相同。你可以使用 get_vocoder() 方法实例化声码器对象并传入频谱图。

bundle = torchaudio.pipelines.TACOTRON2_GRIFFINLIM_PHONE_LJSPEECH

processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)
vocoder = bundle.get_vocoder().to(device)

with torch.inference_mode():
    processed, lengths = processor(text)
    processed = processed.to(device)
    lengths = lengths.to(device)
    spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
waveforms, lengths = vocoder(spec, spec_lengths)
/pytorch/audio/ci_env/lib/python3.10/site-packages/dp/model/model.py:306: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  checkpoint = torch.load(checkpoint_path, map_location=device)
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/nn/modules/transformer.py:307: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)
  warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}")
Downloading: "https://download.pytorch.org/torchaudio/models/tacotron2_english_phonemes_1500_epochs_ljspeech.pth" to /root/.cache/torch/hub/checkpoints/tacotron2_english_phonemes_1500_epochs_ljspeech.pth

  0%|          | 0.00/107M [00:00<?, ?B/s]
 14%|#3        | 14.9M/107M [00:00<00:01, 77.7MB/s]
 21%|##        | 22.4M/107M [00:00<00:01, 72.6MB/s]
 30%|##9       | 32.0M/107M [00:00<00:01, 46.9MB/s]
 35%|###4      | 37.1M/107M [00:00<00:01, 47.9MB/s]
 45%|####4     | 48.0M/107M [00:00<00:01, 52.2MB/s]
 50%|####9     | 53.2M/107M [00:01<00:01, 36.9MB/s]
 57%|#####6    | 60.8M/107M [00:01<00:01, 43.0MB/s]
 61%|######1   | 65.6M/107M [00:01<00:01, 42.6MB/s]
 74%|#######4  | 80.0M/107M [00:01<00:00, 59.6MB/s]
 88%|########8 | 94.9M/107M [00:01<00:00, 76.2MB/s]
 96%|#########5| 103M/107M [00:01<00:00, 72.9MB/s]
100%|##########| 107M/107M [00:01<00:00, 58.3MB/s]
plot(waveforms, spec, vocoder.sample_rate)
tacotron2 pipeline tutorial


Waveglow 声码器

Waveglow 是 Nvidia 发布的一种声码器。预训练的权重发布在 Torch Hub 上。可以使用 torch.hub 模块实例化模型。

# Workaround to load model mapped on GPU
# https://stackoverflow.com/a/61840832
waveglow = torch.hub.load(
    "NVIDIA/DeepLearningExamples:torchhub",
    "nvidia_waveglow",
    model_math="fp32",
    pretrained=False,
)
checkpoint = torch.hub.load_state_dict_from_url(
    "https://api.ngc.nvidia.com/v2/models/nvidia/waveglowpyt_fp32/versions/1/files/nvidia_waveglowpyt_fp32_20190306.pth",  # noqa: E501
    progress=False,
    map_location=device,
)
state_dict = {key.replace("module.", ""): value for key, value in checkpoint["state_dict"].items()}

waveglow.load_state_dict(state_dict)
waveglow = waveglow.remove_weightnorm(waveglow)
waveglow = waveglow.to(device)
waveglow.eval()

with torch.no_grad():
    waveforms = waveglow.infer(spec)
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/hub.py:295: UserWarning: You are about to download and run code from an untrusted repository. In a future release, this won't be allowed. To add the repository to your trusted list, change the command to {calling_fn}(..., trust_repo=False) and a command prompt will appear asking for an explicit confirmation of trust, or load(..., trust_repo=True), which will assume that the prompt is to be answered with 'yes'. You can also use load(..., trust_repo='check') which will only prompt for confirmation if the repo is not already trusted. This will eventually be the default behaviour
  warnings.warn(
Downloading: "https://github.com/NVIDIA/DeepLearningExamples/zipball/torchhub" to /root/.cache/torch/hub/torchhub.zip
/root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub/PyTorch/Classification/ConvNets/image_classification/models/common.py:13: UserWarning: pytorch_quantization module not found, quantization will not be available
  warnings.warn(
/root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub/PyTorch/Classification/ConvNets/image_classification/models/efficientnet.py:17: UserWarning: pytorch_quantization module not found, quantization will not be available
  warnings.warn(
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/nn/utils/weight_norm.py:134: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`.
  WeightNorm.apply(module, name, dim)
Downloading: "https://api.ngc.nvidia.com/v2/models/nvidia/waveglowpyt_fp32/versions/1/files/nvidia_waveglowpyt_fp32_20190306.pth" to /root/.cache/torch/hub/checkpoints/nvidia_waveglowpyt_fp32_20190306.pth
plot(waveforms, spec, 22050)
tacotron2 pipeline tutorial


脚本总运行时间: ( 1 分钟 17.796 秒)

Sphinx-Gallery 生成的图库

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取适合初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源