快捷方式

TensorDictSequential

class tensordict.nn.TensorDictSequential(*args, **kwargs)

TensorDictModules 的序列。

类似于 nn.Sequence,它通过一个链式映射传递张量,每个映射读取并写入一个张量,此模块将通过查询每个输入模块来读写 tensordict。当使用函数式模块调用 TensorDictSequencial 实例时,参数列表(和缓冲区)预计会被连接到单个列表中。

参数:

模块 (OrderedDict[str, Callable[[TensorDictBase], TensorDictBase]] | List[Callable[[TensorDictBase], TensorDictBase]]) – 有序的可调用对象序列,它们以 TensorDictBase 作为输入并返回 TensorDictBase。这些可以是 TensorDictModuleBase 的实例,或任何符合此签名的其他函数。请注意,如果使用了非 TensorDictModuleBase 的可调用对象,其输入和输出键将不会被跟踪,因此不会影响 TensorDictSequential 的 in_keysout_keys 属性。常规的 dict 输入如有必要将被转换为 OrderedDict

关键字参数:
  • partial_tolerant (bool, 可选) – 如果为 True,输入的 tensordict 可以缺少某些输入键。在这种情况下,将只执行那些根据现有键可以执行的模块。此外,如果输入的 tensordict 是 tensordict 的惰性堆叠,并且 partial_tolerant 为 True,并且堆叠中缺少必需的键,那么 TensorDictSequential 将扫描子 tensordict,查找是否存在具有必需键的子 tensordict。默认为 False。

  • selected_out_keys (嵌套键的可迭代对象, 可选) – 要选择的输出键列表。如果未提供,将写入所有 out_keys

注意

一个 TensorDictSequential 实例可能有很多输出键,出于清晰性或内存目的,可能希望在执行后移除其中一些键。如果出现这种情况,可以在实例化后使用方法 select_out_keys(),或者将 selected_out_keys 传递给构造函数。

示例

>>> import torch
>>> from tensordict import TensorDict
>>> from tensordict.nn import TensorDictModule, TensorDictSequential
>>> torch.manual_seed(0)
>>> module = TensorDictSequential(
...     TensorDictModule(lambda x: x+1, in_keys=["x"], out_keys=["x+1"]),
...     TensorDictModule(nn.Linear(3, 4), in_keys=["x+1"], out_keys=["w*(x+1)+b"]),
... )
>>> # with tensordict input
>>> print(module(TensorDict({"x": torch.zeros(3)}, [])))
TensorDict(
    fields={
        w*(x+1)+b: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.float32, is_shared=False),
        x+1: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False),
        x: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
>>> # with tensor input: returns all the output keys in the order of the modules, ie "x+1" and "w*(x+1)+b"
>>> module(x=torch.zeros(3))
(tensor([1., 1., 1.]), tensor([-0.7214, -0.8748,  0.1571, -0.1138], grad_fn=<AddBackward0>))
>>> module(torch.zeros(3))
(tensor([1., 1., 1.]), tensor([-0.7214, -0.8748,  0.1571, -0.1138], grad_fn=<AddBackward0>))

TensorDictSequence 支持函数式、模块化和 vmap 编程。

示例

>>> import torch
>>> from tensordict import TensorDict
>>> from tensordict.nn import (
...     ProbabilisticTensorDictModule,
...     ProbabilisticTensorDictSequential,
...     TensorDictModule,
...     TensorDictSequential,
... )
>>> from tensordict.nn.distributions import NormalParamExtractor
>>> from tensordict.nn.functional_modules import make_functional
>>> from torch.distributions import Normal
>>> td = TensorDict({"input": torch.randn(3, 4)}, [3,])
>>> net1 = torch.nn.Linear(4, 8)
>>> module1 = TensorDictModule(net1, in_keys=["input"], out_keys=["params"])
>>> normal_params = TensorDictModule(
...      NormalParamExtractor(), in_keys=["params"], out_keys=["loc", "scale"]
...  )
>>> td_module1 = ProbabilisticTensorDictSequential(
...     module1,
...     normal_params,
...     ProbabilisticTensorDictModule(
...         in_keys=["loc", "scale"],
...         out_keys=["hidden"],
...         distribution_class=Normal,
...         return_log_prob=True,
...     )
... )
>>> module2 = torch.nn.Linear(4, 8)
>>> td_module2 = TensorDictModule(
...    module=module2, in_keys=["hidden"], out_keys=["output"]
... )
>>> td_module = TensorDictSequential(td_module1, td_module2)
>>> params = TensorDict.from_module(td_module)
>>> with params.to_module(td_module):
...     _ = td_module(td)
>>> print(td)
TensorDict(
    fields={
        hidden: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        input: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        loc: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        output: Tensor(shape=torch.Size([3, 8]), device=cpu, dtype=torch.float32, is_shared=False),
        params: Tensor(shape=torch.Size([3, 8]), device=cpu, dtype=torch.float32, is_shared=False),
        sample_log_prob: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        scale: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([3]),
    device=None,
    is_shared=False)
在 vmap 的情况下
>>> from torch import vmap
>>> params = params.expand(4)
>>> def func(td, params):
...     with params.to_module(td_module):
...         return td_module(td)
>>> td_vmap = vmap(func, (None, 0))(td, params)
>>> print(td_vmap)
TensorDict(
    fields={
        hidden: Tensor(shape=torch.Size([4, 3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        input: Tensor(shape=torch.Size([4, 3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        loc: Tensor(shape=torch.Size([4, 3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        output: Tensor(shape=torch.Size([4, 3, 8]), device=cpu, dtype=torch.float32, is_shared=False),
        params: Tensor(shape=torch.Size([4, 3, 8]), device=cpu, dtype=torch.float32, is_shared=False),
        sample_log_prob: Tensor(shape=torch.Size([4, 3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        scale: Tensor(shape=torch.Size([4, 3, 4]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([4, 3]),
    device=None,
    is_shared=False)
forward(tensordict: TensorDictBase = None, tensordict_out: tensordict.base.TensorDictBase | None = None, **kwargs: Any) TensorDictBase

如果未设置 tensordict 参数,则使用 kwargs 创建 TensorDict 实例。

reset_out_keys()

out_keys 属性重置为其原始值。

返回值:同一个模块,其 out_keys 值恢复为原始值。

示例

>>> from tensordict import TensorDict
>>> from tensordict.nn import TensorDictModule, TensorDictSequential
>>> import torch
>>> mod = TensorDictModule(lambda x, y: (x+2, y+2), in_keys=["a", "b"], out_keys=["c", "d"])
>>> mod.select_out_keys("d")
>>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, [])
>>> mod(td)
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
>>> mod.reset_out_keys()
>>> mod(td)
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
select_out_keys(*selected_out_keys) TensorDictSequential

选择将在输出 tensordict 中找到的键。

这在想要移除复杂图中的中间键,或者当这些键的存在可能引发意外行为时很有用。

原始的 out_keys 仍然可以通过 module.out_keys_source 访问。

参数:

*out_keys (字符串序列字符串元组) – 应在输出 tensordict 中找到的输出键。

返回值:同一个模块,已就地修改并更新了 out_keys

最简单的用法是结合 TensorDictModule 使用。

示例

>>> from tensordict import TensorDict
>>> from tensordict.nn import TensorDictModule, TensorDictSequential
>>> import torch
>>> mod = TensorDictModule(lambda x, y: (x+2, y+2), in_keys=["a", "b"], out_keys=["c", "d"])
>>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, [])
>>> mod(td)
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
>>> mod.select_out_keys("d")
>>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, [])
>>> mod(td)
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

此功能也适用于分派的参数: 示例

>>> mod(torch.zeros(()), torch.ones(()))
tensor(2.)

此更改将就地发生 (即返回同一个模块,但 out_keys 列表已更新)。可以使用 TensorDictModuleBase.reset_out_keys() 方法恢复此更改。

示例

>>> mod.reset_out_keys()
>>> mod(TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, []))
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

这也适用于其他类,例如 Sequential: 示例

>>> from tensordict.nn import TensorDictSequential
>>> seq = TensorDictSequential(
...     TensorDictModule(lambda x: x+1, in_keys=["x"], out_keys=["y"]),
...     TensorDictModule(lambda x: x+1, in_keys=["y"], out_keys=["z"]),
... )
>>> td = TensorDict({"x": torch.zeros(())}, [])
>>> seq(td)
TensorDict(
    fields={
        x: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        y: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        z: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
>>> seq.select_out_keys("z")
>>> td = TensorDict({"x": torch.zeros(())}, [])
>>> seq(td)
TensorDict(
    fields={
        x: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        z: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
select_subsequence(in_keys: Optional[Iterable[NestedKey]] = None, out_keys: Optional[Iterable[NestedKey]] = None) TensorDictSequential

返回一个新的 TensorDictSequential,其中仅包含计算给定输入键的给定输出键所需的模块。

参数:
  • in_keys – 我们要选择的子序列的输入键。所有不在 in_keys 中的键将被视为不相关,并且 *仅* 将这些键作为输入的模块将被丢弃。生成的 sequential 模块将遵循模式“所有模块的输出会因任何在 中的键的不同值而受到影响”。如果未提供,则假定使用模块的 in_keys

  • out_keys – 我们要选择的子序列的输出键。生成的序列中将只包含获取 out_keys 所必需的模块。生成的 sequential 模块将遵循模式“所有对 条目的值构成条件的模块。”如果未提供,则假定使用模块的 out_keys

返回值:

一个新的 TensorDictSequential,其中仅包含根据给定的输入和输出键所需的模块。

示例

>>> from tensordict.nn import TensorDictSequential as Seq, TensorDictModule as Mod
>>> idn = lambda x: x
>>> module = Seq(
...     Mod(idn, in_keys=["a"], out_keys=["b"]),
...     Mod(idn, in_keys=["b"], out_keys=["c"]),
...     Mod(idn, in_keys=["c"], out_keys=["d"]),
...     Mod(idn, in_keys=["a"], out_keys=["e"]),
... )
>>> # select all modules whose output depend on "a"
>>> module.select_subsequence(in_keys=["a"])
TensorDictSequential(
    module=ModuleList(
      (0): TensorDictModule(
          module=<function <lambda> at 0x126ed1ca0>,
          device=cpu,
          in_keys=['a'],
          out_keys=['b'])
      (1): TensorDictModule(
          module=<function <lambda> at 0x126ed1ca0>,
          device=cpu,
          in_keys=['b'],
          out_keys=['c'])
      (2): TensorDictModule(
          module=<function <lambda> at 0x126ed1ca0>,
          device=cpu,
          in_keys=['c'],
          out_keys=['d'])
      (3): TensorDictModule(
          module=<function <lambda> at 0x126ed1ca0>,
          device=cpu,
          in_keys=['a'],
          out_keys=['e'])
    ),
    device=cpu,
    in_keys=['a'],
    out_keys=['b', 'c', 'd', 'e'])
>>> # select all modules whose output depend on "c"
>>> module.select_subsequence(in_keys=["c"])
TensorDictSequential(
    module=ModuleList(
      (0): TensorDictModule(
          module=<function <lambda> at 0x126ed1ca0>,
          device=cpu,
          in_keys=['c'],
          out_keys=['d'])
    ),
    device=cpu,
    in_keys=['c'],
    out_keys=['d'])
>>> # select all modules that affect the value of "c"
>>> module.select_subsequence(out_keys=["c"])
TensorDictSequential(
    module=ModuleList(
      (0): TensorDictModule(
          module=<function <lambda> at 0x126ed1ca0>,
          device=cpu,
          in_keys=['a'],
          out_keys=['b'])
      (1): TensorDictModule(
          module=<function <lambda> at 0x126ed1ca0>,
          device=cpu,
          in_keys=['b'],
          out_keys=['c'])
    ),
    device=cpu,
    in_keys=['a'],
    out_keys=['b', 'c'])
>>> # select all modules that affect the value of "e"
>>> module.select_subsequence(out_keys=["e"])
TensorDictSequential(
    module=ModuleList(
      (0): TensorDictModule(
          module=<function <lambda> at 0x126ed1ca0>,
          device=cpu,
          in_keys=['a'],
          out_keys=['e'])
    ),
    device=cpu,
    in_keys=['a'],
    out_keys=['e'])

此方法会传播到嵌套的 sequential

>>> module = Seq(
...     Seq(
...         Mod(idn, in_keys=["a"], out_keys=["b"]),
...         Mod(idn, in_keys=["b"], out_keys=["c"]),
...     ),
...     Seq(
...         Mod(idn, in_keys=["b"], out_keys=["d"]),
...         Mod(idn, in_keys=["d"], out_keys=["e"]),
...     ),
... )
>>> # select submodules whose output will be affected by a change in "b" or "d" AND which output is "e"
>>> module.select_subsequence(in_keys=["b", "d"], out_keys=["e"])
TensorDictSequential(
    module=ModuleList(
      (0): TensorDictSequential(
          module=ModuleList(
            (0): TensorDictModule(
                module=<function <lambda> at 0x129efae50>,
                device=cpu,
                in_keys=['b'],
                out_keys=['d'])
            (1): TensorDictModule(
                module=<function <lambda> at 0x129efae50>,
                device=cpu,
                in_keys=['d'],
                out_keys=['e'])
          ),
          device=cpu,
          in_keys=['b'],
          out_keys=['d', 'e'])
    ),
    device=cpu,
    in_keys=['b'],
    out_keys=['d', 'e'])

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取面向初学者和高级开发者的深入教程

查看教程

资源

查找开发资源并获得问题解答

查看资源