TensorDictModule¶
- class tensordict.nn.TensorDictModule(*args, **kwargs)¶
TensorDictModule 是
nn.Module
的 Python 包装器,用于读取和写入 TensorDict。- 参数:
module (Callable) – 一个可调用对象,通常是
torch.nn.Module
,用于将输入映射到输出参数空间。它的 forward 方法可以返回单个张量、张量元组,甚至字典。在后一种情况下,TensorDictModule
的输出键将用于填充输出 tensordict(即,out_keys
中存在的键应存在于module
forward 方法返回的字典中)。in_keys (NestedKeys 的可迭代对象, Dict[NestedStr, str]) – 要从输入 tensordict 中读取并传递给模块的键。如果它包含多个元素,则将按 in_keys 可迭代对象给出的顺序传递值。如果
in_keys
是字典,则其键必须对应于要在 tensordict 中读取的键,其值必须与函数签名中的关键字参数名称匹配。out_keys (str 的可迭代对象) – 要写入输入 tensordict 的键。out_keys 的长度必须与嵌入式模块返回的张量数量匹配。使用“_”作为键可以避免将张量写入输出。
将神经网络嵌入到 TensorDictModule 中只需要指定输入和输出键。TensorDictModule 支持函数式和常规
nn.Module
对象。在函数式情况下,必须指定“params”(和“buffers”)关键字参数示例
>>> from tensordict import TensorDict >>> # one can wrap regular nn.Module >>> module = TensorDictModule(nn.Transformer(128), in_keys=["input", "tgt"], out_keys=["out"]) >>> input = torch.ones(2, 3, 128) >>> tgt = torch.zeros(2, 3, 128) >>> data = TensorDict({"input": input, "tgt": tgt}, batch_size=[2, 3]) >>> data = module(data) >>> print(data) TensorDict( fields={ input: Tensor(shape=torch.Size([2, 3, 128]), device=cpu, dtype=torch.float32, is_shared=False), out: Tensor(shape=torch.Size([2, 3, 128]), device=cpu, dtype=torch.float32, is_shared=False), tgt: Tensor(shape=torch.Size([2, 3, 128]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([2, 3]), device=None, is_shared=False)
我们也可以直接传递张量
示例
>>> out = module(input, tgt) >>> assert out.shape == input.shape >>> # we can also wrap regular functions >>> module = TensorDictModule(lambda x: (x-1, x+1), in_keys=[("input", "x")], out_keys=[("output", "x-1"), ("output", "x+1")]) >>> module(TensorDict({("input", "x"): torch.zeros(())}, batch_size=[])) TensorDict( fields={ input: TensorDict( fields={ x: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False), output: TensorDict( fields={ x+1: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), x-1: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
我们可以使用 TensorDictModule 来填充 tensordict
示例
>>> module = TensorDictModule(lambda: torch.randn(3), in_keys=[], out_keys=["x"]) >>> print(module(TensorDict({}, batch_size=[]))) TensorDict( fields={ x: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
另一个特性是将字典作为输入键传递,以控制将值分派到特定关键字参数。
示例
>>> module = TensorDictModule(lambda x, *, y: x+y, ... in_keys={'1': 'x', '2': 'y'}, out_keys=['z'], ... ) >>> td = module(TensorDict({'1': torch.ones(()), '2': torch.ones(())*2}, [])) >>> td['z'] tensor(3.)
对 tensordict 模块进行函数式调用非常简单
示例
>>> import torch >>> from tensordict import TensorDict >>> from tensordict.nn import TensorDictModule >>> td = TensorDict({"input": torch.randn(3, 4), "hidden": torch.randn(3, 8)}, [3,]) >>> module = torch.nn.GRUCell(4, 8) >>> td_module = TensorDictModule( ... module=module, in_keys=["input", "hidden"], out_keys=["output"] ... ) >>> params = TensorDict.from_module(td_module) >>> # functional API >>> with params.to_module(td_module): ... td_functional = td_module(td.clone()) >>> print(td_functional) TensorDict( fields={ hidden: Tensor(shape=torch.Size([3, 8]), device=cpu, dtype=torch.float32, is_shared=False), input: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), output: Tensor(shape=torch.Size([3, 8]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False)
- 在有状态的情况下
>>> module = torch.nn.GRUCell(4, 8) >>> td_module = TensorDictModule( ... module=module, in_keys=["input", "hidden"], out_keys=["output"] ... ) >>> td_stateful = td_module(td.clone()) >>> print(td_stateful) TensorDict( fields={ hidden: Tensor(shape=torch.Size([3, 8]), device=cpu, dtype=torch.float32, is_shared=False), input: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), output: Tensor(shape=torch.Size([3, 8]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False)
可以使用 vmap 运算符来调用函数式模块。
示例
>>> from torch import vmap >>> from tensordict.nn.functional_modules import extract_weights_and_buffers >>> params = extract_weights_and_buffers(td_module) >>> params_repeat = params.expand(4) >>> print(params_repeat) TensorDict( fields={ module: TensorDict( fields={ bias_hh: Tensor(shape=torch.Size([4, 24]), device=cpu, dtype=torch.float32, is_shared=False), bias_ih: Tensor(shape=torch.Size([4, 24]), device=cpu, dtype=torch.float32, is_shared=False), weight_hh: Tensor(shape=torch.Size([4, 24, 8]), device=cpu, dtype=torch.float32, is_shared=False), weight_ih: Tensor(shape=torch.Size([4, 24, 4]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([4]), device=None, is_shared=False)}, batch_size=torch.Size([4]), device=None, is_shared=False) >>> def func(td, params): ... with params.to_module(td_module): ... return td_module(td) >>> td_vmap = vmap(func, (None, 0))(td.clone(), params_repeat) >>> print(td_vmap) TensorDict( fields={ hidden: Tensor(shape=torch.Size([4, 3, 8]), device=cpu, dtype=torch.float32, is_shared=False), input: Tensor(shape=torch.Size([4, 3, 4]), device=cpu, dtype=torch.float32, is_shared=False), output: Tensor(shape=torch.Size([4, 3, 8]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([4, 3]), device=None, is_shared=False)
- forward(tensordict: TensorDictBase, *args, tensordict_out: TensorDictBase | None = None, **kwargs: Any) TensorDictBase ¶
当 tensordict 参数未设置时,kwargs 用于创建 TensorDict 的实例。