merge_tensordicts¶
- class tensordict.merge_tensordicts(*tensordicts: T, callback_exist: Optional[Union[Callable[[Any], Any], Dict[NestedKey, Callable[[Any], Any]]]] = None)¶
将 tensordict 合并在一起。
- 参数:
*tensordicts (TensorDict 序列 或 等效) – 要合并在一起的 tensordict 列表。
- 关键字参数:
callback_exist (callable 或 Dict[str, callable], 可选) – 当每个 tensordict 中都存在条目时的可调用对象。如果条目存在于某些但并非所有 tensordict 中,或者如果未传递
callback_exist
,则使用 update,并将使用 tensordict 序列中的第一个非None
值。如果传递了可调用对象的字典,它将包含与传递给函数的 tensordict 中的某些嵌套键关联的回调函数。
示例
>>> from tensordict import merge_tensordicts, TensorDict >>> td0 = TensorDict({"a": {"b0": 0}, "c": {"d": {"e": 0}}, "common": 0}) >>> td1 = TensorDict({"a": {"b1": 1}, "f": {"g": {"h": 1}}, "common": 1}) >>> td2 = TensorDict({"a": {"b2": 2}, "f": {"g": {"h": 2}}, "common": 2}) >>> td = merge_tensordicts(td0, td1, td2, callback_exist=lambda *v: torch.stack(list(v))) >>> print(td) TensorDict( fields={ a: TensorDict( fields={ b0: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int64, is_shared=False), b1: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int64, is_shared=False), b2: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int64, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False), c: TensorDict( fields={ d: TensorDict( fields={ e: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int64, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False), common: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.int64, is_shared=False), f: TensorDict( fields={ g: TensorDict( fields={ h: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int64, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) >>> print(td["common"]) tensor([0, 1, 2])