make_tensordict¶
- class tensordict.make_tensordict(input_dict: dict[str, CompatibleType] | None = None, batch_size: Sequence[int] | torch.Size | int | None = None, device: DeviceType | None = None, **kwargs: CompatibleType)¶
从关键字参数或输入字典创建 TensorDict。
如果未指定
batch_size
,则返回尽可能大的批处理大小。此函数也适用于嵌套字典,或者可以用来确定嵌套 tensordict 的批处理大小。
- 参数:
input_dict (字典, 可选) – 用于作为数据源的字典(嵌套键兼容)。
**kwargs (TensorDict 或 torch.Tensor) – 作为数据源的关键字参数(与嵌套键不兼容)。
batch_size (int 可迭代对象, 可选) – tensordict 的批处理大小。
device (torch.device 或 兼容类型, 可选) – TensorDict 的设备。
示例
>>> input_dict = {"a": torch.randn(3, 4), "b": torch.randn(3)} >>> print(make_tensordict(input_dict)) TensorDict( fields={ a: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False) >>> # alternatively >>> td = make_tensordict(**input_dict) >>> # nested dict: the nested TensorDict can have a different batch-size >>> # as long as its leading dims match. >>> input_dict = {"a": torch.randn(3), "b": {"c": torch.randn(3, 4)}} >>> print(make_tensordict(input_dict)) TensorDict( fields={ a: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), b: TensorDict( fields={ c: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3, 4]), device=None, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False) >>> # we can also use this to work out the batch sie of a tensordict >>> input_td = TensorDict({"a": torch.randn(3), "b": {"c": torch.randn(3, 4)}}, []) >>> print(make_tensordict(input_td)) TensorDict( fields={ a: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), b: TensorDict( fields={ c: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3, 4]), device=None, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False)