快捷方式

tensordict.nn.set_skip_existing

class tensordict.nn.set_skip_existing(mode: bool | None = True, in_key_attr='in_keys', out_key_attr='out_keys')

用于跳过 TensorDict 图中现有节点的上下文管理器。

当用作上下文管理器时,它会将 skip_existing() 的值设置为指示的 mode,允许用户编写检查全局值并相应执行代码的方法。

当用作方法装饰器时,它将检查 tensordict 输入键,如果 skip_existing() 调用返回 True,则如果所有输出键都已存在,则跳过该方法。预计不会将其用作不遵循以下签名的 方法的装饰器: def fun(self, tensordict, *args, **kwargs)

参数:
  • mode (bool, 可选) – 如果为 True,则表示图中现有的条目不会被覆盖,除非它们只是部分存在。skip_existing() 将返回 True。如果为 False,则不执行检查。如果为 None,则 skip_existing() 的值不会更改。这旨在专门用于装饰方法并允许其行为依赖于用作上下文管理器时相同的类(请参阅下面的示例)。默认为 True

  • in_key_attr (str, 可选) – 模块正在装饰的方法中输入键列表属性的名称。默认为 in_keys

  • out_key_attr (str, 可选) – 模块正在装饰的方法中输出键列表属性的名称。默认为 out_keys

示例

>>> with set_skip_existing():
...     if skip_existing():
...         print("True")
...     else:
...         print("False")
...
True
>>> print("calling from outside:", skip_existing())
calling from outside: False

此类还可以用作装饰器: .. rubric:: 示例

>>> from tensordict import TensorDict
>>> from tensordict.nn import set_skip_existing, skip_existing, TensorDictModuleBase
>>> class MyModule(TensorDictModuleBase):
...     in_keys = []
...     out_keys = ["out"]
...     @set_skip_existing()
...     def forward(self, tensordict):
...         print("hello")
...         tensordict.set("out", torch.zeros(()))
...         return tensordict
>>> module = MyModule()
>>> module(TensorDict({"out": torch.zeros(())}, []))  # does not print anything
TensorDict(
    fields={
        out: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
>>> module(TensorDict({}, []))  # prints hello
hello
TensorDict(
    fields={
        out: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

用设置为 None 的模式装饰方法在希望让上下文管理器从外部处理跳过操作时非常有用

>>> from tensordict import TensorDict
>>> from tensordict.nn import set_skip_existing, skip_existing, TensorDictModuleBase
>>> class MyModule(TensorDictModuleBase):
...     in_keys = []
...     out_keys = ["out"]
...     @set_skip_existing(None)
...     def forward(self, tensordict):
...         print("hello")
...         tensordict.set("out", torch.zeros(()))
...         return tensordict
>>> module = MyModule()
>>> _ = module(TensorDict({"out": torch.zeros(())}, []))  # prints "hello"
hello
>>> with set_skip_existing(True):
...     _ = module(TensorDict({"out": torch.zeros(())}, []))  # no print

注意

为了允许模块具有相同的输入和输出键,并且不会错误地忽略子图,当输出键也是输入键时,@set_skip_existing(True) 将被停用

>>> class MyModule(TensorDictModuleBase):
...     in_keys = ["out"]
...     out_keys = ["out"]
...     @set_skip_existing()
...     def forward(self, tensordict):
...         print("calling the method!")
...         return tensordict
...
>>> module = MyModule()
>>> module(TensorDict({"out": torch.zeros(())}, []))  # does not print anything
calling the method!
TensorDict(
    fields={
        out: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源