dense_stack_tds¶
- class tensordict.dense_stack_tds(td_list: Sequence[TensorDictBase] | LazyStackedTensorDict, dim: int = None)¶
密集地堆叠一个
TensorDictBase
对象列表(或一个LazyStackedTensorDict
),前提是它们具有相同的结构。此函数使用一个
TensorDictBase
列表调用(直接传递或从一个LazyStackedTensorDict
获取)。与调用torch.stack(td_list)
不同(它将返回一个LazyStackedTensorDict
),此函数会扩展输入列表的第一个元素,并将输入列表堆叠到该元素上。这仅在输入列表的所有元素具有相同结构时才有效。返回的TensorDictBase
将与输入列表元素的类型相同。当需要堆叠的一些
TensorDictBase
对象是LazyStackedTensorDict
或在条目(或嵌套条目)中具有LazyStackedTensorDict
时,此函数很有用。在这种情况下,调用torch.stack(td_list).to_tensordict()
是不可行的。因此,此函数为密集地堆叠提供的列表提供了另一种方法。- 参数:
td_list (TensorDictBase 列表 或 LazyStackedTensorDict) – 要堆叠的 tds。
dim (int, 可选) – 堆叠它们的维度。如果 td_list 是 LazyStackedTensorDict,则将自动检索。
示例
>>> import torch >>> from tensordict import TensorDict >>> from tensordict import dense_stack_tds >>> from tensordict.tensordict import assert_allclose_td >>> td0 = TensorDict({"a": torch.zeros(3)},[]) >>> td1 = TensorDict({"a": torch.zeros(4), "b": torch.zeros(2)},[]) >>> td_lazy = torch.stack([td0, td1], dim=0) >>> td_container = TensorDict({"lazy": td_lazy}, []) >>> td_container_clone = td_container.clone() >>> td_stack = torch.stack([td_container, td_container_clone], dim=0) >>> td_stack LazyStackedTensorDict( fields={ lazy: LazyStackedTensorDict( fields={ a: Tensor(shape=torch.Size([2, 2, -1]), device=cpu, dtype=torch.float32, is_shared=False)}, exclusive_fields={ }, batch_size=torch.Size([2, 2]), device=None, is_shared=False, stack_dim=0)}, exclusive_fields={ }, batch_size=torch.Size([2]), device=None, is_shared=False, stack_dim=0) >>> td_stack = dense_stack_tds(td_stack) # Automatically use the LazyStackedTensorDict stack_dim TensorDict( fields={ lazy: LazyStackedTensorDict( fields={ a: Tensor(shape=torch.Size([2, 2, -1]), device=cpu, dtype=torch.float32, is_shared=False)}, exclusive_fields={ 1 -> b: Tensor(shape=torch.Size([2, 2]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([2, 2]), device=None, is_shared=False, stack_dim=1)}, batch_size=torch.Size([2]), device=None, is_shared=False) # Note that # (1) td_stack is now a TensorDict # (2) this has pushed the stack_dim of "lazy" (0 -> 1) # (3) this has revealed the exclusive keys. >>> assert_allclose_td(td_stack, dense_stack_tds([td_container, td_container_clone], dim=0)) # This shows it is the same to pass a list or a LazyStackedTensorDict