快捷方式

torcheval.metrics.functional.multiclass_recall

torcheval.metrics.functional.multiclass_recall(input: Tensor, target: Tensor, *, num_classes: int | None = None, average: str | None = 'micro') Tensor

计算召回率得分,计算公式为真阳性(TP)的数量与实际阳性总数(TP + FN)的比率。其类版本为 torcheval.metrics.MultiClassRecall

参数:
  • input (Tensor) – 标签预测的张量 它可以是预测的标签,形状为 (n_sample, )。它也可以是概率或 logits,形状为 (n_sample, n_class)。将使用 torch.argmax 将输入转换为预测的标签。

  • target (Tensor) – 形状为 (n_sample, ) 的真实标签的张量。

  • num_classes – 类别数。

  • average

    • 'micro' [默认]

      全局计算指标,使用所有类别中的总真阳性和假阴性。

    • 'macro':

      分别为每个类别计算指标,并返回它们的未加权平均值。忽略真实例和预测实例均为 0 的类别。

    • 'weighted':

      分别为每个类别计算指标,并返回它们的平均值,该平均值按 target 张量中每个类别的实例数加权。忽略真实例和预测实例均为 0 的类别。

    • None:

      分别为每个类别计算指标,并返回每个类别的指标。

示例

>>> import torch
>>> from torcheval.metrics.functional.classification import multiclass_recall
>>> input = torch.tensor([0, 2, 1, 3])
>>> target = torch.tensor([0, 1, 2, 3])
>>> multiclass_recall(input, target)
tensor(0.5000)
>>> multiclass_recall(input, target, average=None, num_classes=4)
tensor([1., 0., 0., 1.])
>>> multiclass_recall(input, target, average="macro", num_classes=4)
tensor(0.5000)
>>> input = torch.tensor([[0.9, 0.1, 0, 0], [0.1, 0.2, 0.4, 0.3], [0, 1.0, 0, 0], [0, 0, 0.2, 0.8]])
>>> multiclass_recall(input, target)
tensor(0.5000)

文档

访问 PyTorch 的全面开发者文档

查看文档

教程

获取初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获取问题的解答

查看资源