快捷方式

torchaudio.prototype.models.conformer_wav2vec2_model

torchaudio.prototype.models.conformer_wav2vec2_model(extractor_input_dim: int, extractor_output_dim: int, extractor_stride: int, encoder_embed_dim: int, encoder_projection_dropout: float, encoder_num_layers: int, encoder_num_heads: int, encoder_ff_interm_features: int, encoder_depthwise_conv_kernel_size: Union[int, List[int]], encoder_dropout: float, encoder_convolution_first: bool, encoder_use_group_norm: bool) Wav2Vec2Model[source]

构建自定义 Conformer Wav2Vec2Model

参数:
  • extractor_input_dim (int) – 特征的输入维度。

  • extractor_output_dim (int) – 特征提取后的输出维度。

  • extractor_stride (int) – 特征提取的时间缩减层中使用的步长。

  • encoder_embed_dim (int) – 特征投影中嵌入的维度。

  • encoder_projection_dropout (float) – 输入特征投影到 embed_dim 后应用的 dropout 概率

  • encoder_num_layers (int) – 编码器中 Conformer 层的数量。

  • encoder_num_heads (int) – 每个 Conformer 层中的头数量。

  • encoder_ff_interm_features (int) – 每个 Conformer 层中前馈网络的隐藏层维度。

  • encoder_depthwise_conv_kernel_size (intList[int]) – 对应每个 Conformer 层的核大小列表。如果提供的是 int,则所有层将使用相同的核大小。

  • encoder_dropout (float) – 每个 Conformer 层中的 dropout 概率。

  • encoder_convolution_first (bool) – 是否在每个 Conformer 层的 attention 模块之前应用 convolution 模块。

  • encoder_use_group_norm (bool) – 是否在每个 Conformer 层的 convolution 模块中使用 GroupNorm 而非 BatchNorm1d

返回:

带有 conformer 编码器的生成的 wav2vec2 模型。

返回类型:

Wav2Vec2Model

文档

访问 PyTorch 的综合开发者文档

查看文档

教程

获取针对初学者和高级开发者的深入教程

查看教程

资源

查找开发资源并获得问题解答

查看资源